Debris analysis method of on-orbit satellite collision is presented in this paper. Hypervelocity impact simulation technique and self-developed fragment identification and statistics method are applied to analyzing fragmentation process of Iridium33 and Cosmos2251 collision as an instance. Using a combined method of finite element method (FEM) and smoothed particle hydrodynamics (SPH), large fragments are identified from the debris cloud. Then with binary image conversion and statistics of connectedness regions on the image, the amount, size, position, velocity and mass of each fragment are determined. Simulation results show that most large fragments are generated from Cosmos2251 and the quantity of fragments is in agreement with space surveillance network (SSN) observation data, which shows the effectiveness of the proposed method. Most materials in the normal impact region are converted into small fragments after the impact while the large fragments are from materials far from the normal impact region. To measure the degree of spall, equivalent normal impact mass is defined. The computation results show that the total mass of either large or small fragments is only determined by equivalent normal impact mass despite various impact locations.
ZHANG Xiaotian, JIA Guanghui, HUANG Hai
. Debris Analysis of On-orbit Satellite Collision Based on Hypervelocity Impact Simulation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011
, 32(7)
: 1224
-1230
.
DOI: CNKI:11-1929/V.20110330.1305.004
[1] Zukas J A. Impact dynamics[M]. New York: Wiley, 1989.
[2] Monaghan J J. Shock simulation by the particle method SPH[J]. Journal of Computational Physics, 1983, 52(2): 374-389.
[3] Benz W. Smooth particle hydrodynamics: a review//Proceedings of the NATO Advanced Research Workshop on the Numerical Modelling of Nonlinear Stellar Pulsation Problems and Prospects.1989.
[4] 刘有英. 基于爆炸力学的在轨卫星裂解模型与评估分析. 北京航空航天大学博士后研究工作报告. 北京:北京航空航天大学宇航学院, 2010. Liu Youying. Analysis of on-orbit satellite breakup model and assessment based on mechanics of explosion. Post-doctor Research Report of Beihang University. Beijing: Schol of Astronautics, Beihang University, 2010. (in Chinese)
[5] Johnson N L, Krisko P H. NASA’s new breakup model of Evolve 4.0[J]. Advance in Space Research, 2001, 28(9): 1377-1384.
[6] 汪颋. 空间碎片演化及对航天器碰撞威胁分析. 北京: 北京航空航天大学宇航学院, 2009. Wang Ting. Orbital debris evolution and threat to spacecraft. Beijing: School of Astronautics, Beihang University, 2009.(in Chinese)
[7] Stansbery G, Matney M, Liou J. A comparison of catastrophic on orbit collision//The Advanced Maui Optical and Space Surveillance Technologies Conference. 2008.
[8] Zhang X T, Jia G H, Huang H. Fragments identification and statistics method of hypervelocity impact SPH simulation[J]. Chinese Journal of Astronautics, 2011, 24(1): 18-24.
[9] NORAD two-line element sets current data. (2010-9-26) .http://celestrack.com/NORAD/elements.
[10] 龚自正,李明. 美俄卫星太空碰撞事件及对航天活动的影响[J]. 航天器环境工程, 2009, 26(2): 101-106. Gong Zizheng, Li Ming. The giant collision of US-Russia satellites in space and its influences on spaceflight activities[J].Spacecraft Environment Engineering, 2009, 26(2): 101-106.(in Chinese)
[11] 冯昊,向开恒. 美俄卫星碰撞事件验证及其对我国卫星的影响分析[J]. 航天器工程, 2009, 18(5): 20-27. Feng Hao, Xiang Kaiheng. Verification of collision between American and Russian satellite and analysis of impact on China’s satellite[J].Spacecraft Engineering, 2009, 18(5): 20-27.(in Chinese)
[12] 李怡勇,李智,沈怀荣,等. 美俄卫星撞击碎片分析[J].装备指挥技术学院学报, 2009, 20(2): 60-63. Li Yiyong, Li Zhi, Shen Huairong, et al. Analysis on debris from U.S.’s and Russia’s satellites collision[J]. Journal of the Academy of Equipment Command & Technology, 2009, 20(2): 60-63.(in Chinese)
[13] 汪颋,黄海. 俄美卫星相撞事件初步分析[J]. 空间碎片研究与应用, 2009, 9(1): 26-34. Wang Ting, Huang Hai. Preliminary analysis on the collision event between Russian and American satellites[J]. Space Debris Research and Application, 2009, 9(1): 26-34.(in Chinese)
[14] Hallquist J O. LS-DYNA keyword user’s manual : Version 971[M]. Livermore, California, USA: Livermore Software Technology Corporation, 2007.
[15] Beissel S R, Gerlach C A, Johnson G R. Hypervelocity impact computations with finite elements and meshfree particles[J]. International Journal of Impact Engineering, 2006, 17(1): 291-302.