Solid Mechanics and Vehicle Conceptual Design

Solution of Model Validation Thermal Challenge Problem Using a Bayesian Method

Expand
  • 1. The State Key Laboratory of Mechanics and Control for Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2010-11-02

  Revised date: 2010-12-03

  Online published: 2011-07-23

Abstract

To further promote the development of model validation and understand the specific implementation steps of model validation, the framework, ideas and general process for model validation utilizing Bayesian method are achieved by the example of model validation thermal challenge problem presented in Sandia National Laboratories. Model validation is not merely a process of assessing the accuracy of a simulation model, but also a process to improve the predictive precision through the model validation results. The basic theories of Bayesian analysis and uncertainty quantification are introduced and several model updating methods are emphasized and compared in model validation. Finally, the Bayesian model updating method is applied to model validation thermal challenge problem, and more accurate prediction results are obtained than those from the initial model. The results demonstrate that the model predictive precision can be significantly improved when utilizing Bayesian model updating method in model validation.

Cite this article

ZHANG Baoqiang, CHEN Guoping, GUO Qintao . Solution of Model Validation Thermal Challenge Problem Using a Bayesian Method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011 , 32(7) : 1202 -1209 . DOI: CNKI:11-1929/V.20110402.1751.002

References

[1] 张令弥. 计算仿真与模型确认及在结构环境与强度中的应用[J]. 强度与环境, 2002, 29(2): 42-47. Zhang Lingmi. Computer simulation & model validation with application to strength and environment engineering[J]. Structure & Environment Engineering, 2002, 29(2): 42-47.(in Chinese)

[2] The American Society of Mechanical Engineers. ASME V&V 10-2006 Guide for verification & validation in computational solid mechanics[S]. New York: ASME, 2006.

[3] American Institute of Aeronautics and Astronautics. AIAA-G-077-1998 Guide for the verification and validation of computational fluid dynamics simulations[S]. Reston, VA: AIAA, 1998.

[4] Oberkampf W L, Trucano T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2002, 38(3): 209-272.

[5] National Aeronautics and Space Administration. NASA-STD-7009 Standard for models and simulations[S]. Washington, DC: NASA, 2008.

[6] The American Society of Mechanical Engineers. ASME V&V 20-2008 Standard for verification and validation in computational fluid dynamics and heat transfer[S]. New York: ASME, 2008.

[7] Roy C J, Oberkampf W L. A complete framework for ve-rification, validation, and uncertainty quantification in scientific computing (invited). AIAA-2010-124, 2010.

[8] 郭勤涛, 张令弥, 费庆国. 结构动力学有限元模型修正的发展——模型确认[J]. 力学进展, 2006, 36(1): 36-42. Guo Qintao, Zhang Lingmi, Fei Qingguo. From FE model updating to model validation: advances in modeling of dynamic structures[J]. Advances in Mechanics, 2006, 36(1): 36-42.(in Chinese)

[9] 魏发远. 复杂系统仿真模型的分层确认[J]. 计算机仿真, 2007, 24(7): 82-85. Wei Fayuan. A hierarchy validation approach for simulation models of complex system[J]. Computer Simulation, 2007, 24(7): 82-85.(in Chinese)

[10] 邓小刚, 宗文刚, 张来平, 等. 计算流体力学中的验证与确认[J]. 力学进展, 2007, 37(2): 279-288. Deng Xiaogang, Zong Wengang, Zhang Laiping, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2): 279-288.(in Chinese)

[11] Hills R G, Pilch M, Dowding K J, et al. Validation challenge workshop[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2375-2380.

[12] Dowding K J, Pilch M, Hills R G. Formulation of the thermal problem[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2385-2389.

[13] Liu F, Bayarri M J, Berger J O, et al. A Bayesian analysis of the thermal challenge problem[J]. Computer Me-thods in Applied Mechanics and Engineering, 2008, 197(29-32): 2457-2466.

[14] Higdon D, Nakhleh C, Gattiker J, et al. A Bayesian calibration approach to the thermal problem[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2431-2441.

[15] McFarland J, Mahadevan S. Multivariate significance testing and model calibration under uncertainty[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2467-2479.

[16] Xiong Y, Chen W, Tsui K L, et al. A better understanding of model updating strategies in validating engineering models[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(15-16):1327-1337.

[17] Rutherford B M. Computational modeling issues and methods for the "regulatory problem" in engineering—solution to the thermal problem[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2480-2489.

[18] Ferson S, Oberkampf W L, Ginzburg L. Model validation and predictive capability for the thermal challenge problem[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2408-2430.

[19] Hills R G, Dowding K J. Multivariate approach to the thermal challenge problem[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2442-2456.

[20] Brandyberry M D. Thermal problem solution using a surrogate model clustering technique[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2390-2407.

[21] Hills R G, Dowding K J, Swiler L. Thermal challenge problem: summary[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2490-2495.

[22] Kennedy M C, O’Hagan A. Bayesian calibration of computer models[J]. Journal of the Royal Statistical Society: Series B, 2001, 63(3): 425-464.

[23] Haario H, Laine M. Markov chain Monte Carlo methods for high dimensional inversion in remote sensing[J]. Journal of the Royal Statistical Society: Series B, 2004, 66(3): 591-607.
Outlines

/