Because of the large disparity between the acoustic wave speed and the waves convected at fluid speed, the accuracy of the solution to the flow fields of non-compressible low Mach number flows is poor and the convergence rate is bad when using the standard convective scheme based on compressible flows. Generally the preconditioning techniques are used to deal with this problem. In the optimization method based on control theory, the Jacobian matrix of adjoint equations and the mxatri of flow equations are similar, so the same difficulties such as oversized numerical viscosity and numerical rigidity exist when solving the adjoint equations. In this paper, a Roe scheme with preconditioning is first deduced. Then a full speed numerical scheme is developed for adjoint equations. Finally, two typical tests about an airfoil and a cascade are presented. The results indicate that the preconditioned adjoint equation method can develop a low Mach number aerodynamic inverse design efficiently.
DU Lei, NING Fangfei
. Aerodynamic Inverse Design Method for Low Mach Number Airfoils[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011
, 32(7)
: 1180
-1188
.
DOI: CNKI:11-1929/V.20110126.0938.001
[1] Turkel E. Preconditioning techniques in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 1999, 31(1): 385-416.
[2] Turkel E. Preconditioned methods for solving the incompressible and low speed compressible equations[J]. Journal of Computational Physics, 1987, 72: 277-298.
[3] Choi Y H, Merkle C L. The application of preconditioning to viscous flows[J]. Journal of Computational Physics, 1993, 105(2): 207-223.
[4] van Leer B, Lee W T, Roe P L. Characteristic time stepping or local preconditioning of the Euler equations. AIAA-1991-1552, 1991.
[5] Tweedt D L, Chima R V, Turkel E. Preconditioning for numerical simulation of low Machnumber three-dimensional viscous turbomachinery flows. AIAA-1997-1828, 1997.
[6] Briley W R, Taylor L K, Whitfield D L. High resolution viscous flow simulations at arbitrary Mach number[J]. Journal of Computational Physics, 2003, 184(1): 79-105.
[7] Guillard H, Violates C. On the behavior of upwind schemes in the low Mach number limit[J]. Computers and Fluids, 1999, 28(1): 63-86.
[8] Li X S, Gu C W. An all-speed Roe type scheme and its asymptotic analysis of low Mach number behaviour[J]. Journal of Computational Physics, 2008, 227(10): 5144-5159.
[9] Edwards J R. Towards unified CFD simulation of real fluid flows. AIAA-2001-2524, 2001.
[10] Edwards J R, Liou M S. Low diffusion flux-splitting schemes for flows at all speeds[J]. AIAA Journal, 1998.36(9): 1610-1617.
[11] Bauer F, Garabedian P, Korn D. Supercritical wine section. Lecture Notes in Economics and Math Systems, New York: Springer-Verlag, Section 1. 1972: 66; Section 2. 1975: 108.
[12] Schmidt E. Computation of supercritical compressor and turbine cascade with a design method fortransonic flow[J]. Journal of Engineering for Power, 1980, 102(1): 68-74.
[13] Jameson A. Aerodynamic design via control theory. AGARD-CP-463, 1989.
[14] Jameson A. Optimum aerodynamic design using CFD and control theory[J]. AIAA-1995-1729, 1995.
[15] Jameson A, Reuther J. Control theory based airfoildesign using the Euler equations[J]. AIAA-1994-4272, 1994.
[16] Nadarajah S, Jameson A. A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization . AIAA-2000-0667, 2000.
[17] Jameson A, Alonso J J, Reuther J, et al. Aerodynamic shape optimization techniques based on control theory. AIAA-1998-2538, 1998.
[18] Reuther J, Jameson A. Aerodynamic shape optimization of wing and wing-body configurations using control theory. AIAA-1995-123, 1995.
[19] Reuther J, Jameson A, Alonso J J, et al. Constrained multipoint aerodynamic shape optimization using an adjoint formulation anparallel computers. AIAA-1997-103, 1997.
[20] 杨旭东,乔志德. 基于共轭方程法的跨音速机翼气动力优化设计[J]. 航空学报, 2003, 24(1): 1-5 Yang Xudong, Qiao Zhide. Optimum aerodynamic design of transonic wing based on adjoint equationsmethod[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1): 1-5.(in Chinese)
[21] 杜磊,宁方飞. 基于控制理论的压气机叶型数值优化方法[J]. 航空动力学报,2009,24(3): 615-625. Du Lei, Ning Fangfei. Numerical optimization of compressor blade profile based on control theory[J]. Journal of Aerospace Power, 2009, 24(3): 615-625.(in Chinese)
[22] Asouti V G, Zymaris A S, Papadimitriou D I, et al. Continuous and discrete adjoint approaches for aerodynamic shape optimizationwith low Mach number preconditioning[J]. Internatinal Journal for Numerical Method in Fluids, 2008, 57(10): 1485-1504.
[23] Venkateswaran S, Li D, Merkle C L. Influence of stagnation regions on preconditioned solutions at low speeds. AIAA-2003-435, 2003.
[24] Sheng C, Wang X. Characteristic variableboundary conditions for arbitrary Mach number algorithm in rotating frame. AIAA-2003-3976, 2003.
[25] van Leer. Towards the ultimate conservative difference scheme V. second-order sequel to Godunov’s method[J].Journal of Computational Physics, 1979, 32(1): 101-136.
[26] Rizzi M. Runge-Kutta finite volume simulationof laminar transonic flow over NACA0012 airfoil using the Navier-Stokes equations. FFA TN, 1986-60, 1986.
[27] Yoon S, Jameson A. Lower upper symmetric Gauss-Sei-del method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1998, 26(9): 1025-1026.
[28] Xie L. Gradient-based optimum aerodynamic designusing adjoint methods. Virginia: Virginia Polytechnic Institute, State University, 2002.
[29] Hicks R M, Henne P A. Wing design by numerical optimization. AIAA-1977-1247, 1977.
[30] Broyden C G. The convergence of a class of doublerank minimization algorithms[J]. IMA Journal of Applied Mathematics,1970, 6(3): 76-90.