Material Engineering and Mechanical Manufacturing

Dimensional Design and Corresponding Methodology for Helmet Mounted Display with 6-DOF Parallel Manipulator Based on Requirements of Head Motion

Expand
  • College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2010-08-02

  Revised date: 2010-09-14

  Online published: 2011-04-25

Abstract

In this paper, a dimensional design and its corresponding methodology for helmet mounted display with a 6-DOF parallel manipulator (HMDPM) is investigated while characteristics of head motion are considered as design criterions. The characteristics of head motion in flight training are summarized based on data from many experiments. In practice, design criterions are classified into compulsory requirements and relaxable requirements, and the objective functions regarding the kinematic performances of the HMDPM are defined according to all criterions, while the mathematical model of optimization is established in accordance with the principle of nonlinear least squares. The paper presents a novel methodology—modified nonlinear least squares based on centroidal Voronoi tesselation(CVT)—which initializes the design parameters with CVT and solves the optimization problem by means of the nonlinear least squares method, thus obtaining several feasible solutions.The numerical simulations show that each design solution satisfies all the compulsory criterions and the new method has a better ability for global optimization. Additionally, the best solution is determined by taking into account the optimization of relaxable requirements—dexterity in workspace, and the feasibility of the new method is further verified by analyzing the partial indices of the optimal mechanism.

Cite this article

LI Peng, GU Hongbin, WU Dongsu . Dimensional Design and Corresponding Methodology for Helmet Mounted Display with 6-DOF Parallel Manipulator Based on Requirements of Head Motion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011 , 32(4) : 739 -750 . DOI: CNKI:11-1929/V.20101111.0914.029

References

[1] Merlet J P. Optimal design of robots//Online Proceedings of Robotics: Science and Systems. Boston: MIT Press, 2005: 8-15.

[2] Merlet J P. DEMOCRAT: A design methodology for the conception of robot with parallel architecture//Proceedings of the International Conference on Intelligent: Robots and Systems. 1997: 1630-1636.

[3] Merlet J P. Parallel robots[M]. 2nd ed. Sophia-Antiplis: Springer, 2006: 213-214.

[4] Merlet J P. The necessary of optimal design for parallel machines and a possible certified methodology//Proceedings of the 2nd International Colloquium of the Collaborative Research Center 562: Robotic Systems for Handing and Assembly. Braunschweig: Technical University Braunschweig and German Aerospace Centre, 2005: 7-20.

[5] Hao F, Merlet J P. Multi-criteria optimal design of parallel manipulators based on interval analysis[J]. Mechanism and Machine Theory, 2005, 40(2): 157-171.

[6] Liu X J, Wang J S. A new methodology for optimal kinematic design of parallel mechanisms[J]. Mechanism and Machine Theory, 2007, 42(9): 1210-1224.

[7] 金振林, 高峰. 新型并联机床全域力/运动传递各向同性与其结构尺寸关系[J]. 机床与液压, 2002(1): 38-40. Jin Zhenlin, Gao Feng. The relationship between globe force/motion transmission isotropic of a novel parallel kinematic machine and its link lengths[J]. Machine Tool and Hydraulics, 2002(1): 38-40. (in Chinese)

[8] 杨育林, 樊少帅, 杜雄, 等. 自动倾斜器不旋转环操纵机构等效并联机构尺寸优化分析[J]. 机械工程学报, 2008, 46(7): 48-56. Yang Yulin, Fan Shaoshuai, Du Xiong, et al. Analysis on size optimization of equivalent parallel mechanism of stationary ring of swashplate[J]. Journal of Mechanical Engineering, 2010, 46(7): 48-56. (in Chinese)

[9] Tang X Q, Li T M, Wang J S, et al. Dimensional design theory and methodology of 6-DOF scissor parallel manipulator[J]. Chinese Journal of Mechanical Engineering, 2004, 17(1): 6-11.

[10] Altuzarra O, Salgado O, Hernandez A, et al. Multiobjective optimum design of a symmetric parallel schonflies-motion generator[J]. Journal of Mechanical Design, 2009, 131(3): 031002.1-031002.11.

[11] 王伟,谢海波, 傅新, 等. 一种基于固有频率分析的液压6自由度并联机构参数优化方法[J]. 机械工程学报, 2006, 42(3): 77-82. Wang Wei, Xie Haibo, Fu Xin, et al. Optimal method of structural parameters for hydraulic 6-DOF parallel platform based on natural frequency[J]. Chinese Journal of Mechanical Engineering, 2006, 42(3): 77-82. (in Chinese)

[12] Ottaviano E, Ceccarelli M. Optimal design of CaPaMan (Cassino Parallel Manipulator) with a specified orientation workspace[J]. Robotica, 2002, 20(2): 159-166.

[13] Ceccarelli M. An optimum design of parallel manipulators: Formulation and experimental validation//Proceedings of the 1st International Colloquium on Collaborative Research Center 562: Robotic Systems for Handing and Assembly. Braunschweig: Technical University Braunschweig and German Aerospace Centre, 2002: 47-63.

[14] 曹永刚, 张玉茹, 马运忠. 6-RSS型并联机构的工作空间分析与参数优化[J]. 机械工程学报, 2008, 44(1): 19-24. Cao Yonggang, Zhang Yuru, Ma Yunzhong. Workspace analysis and parameter optimization of 6-RSS parallel mechanism[J]. Chinese Journal of Mechanical Engineering, 2008, 44(1): 19-24. (in Chinese)

[15] 刘玉旺, 余晓流, 储刘火, 等. 并联机构工作空间及参数优化研究[J]. 机械科学与技术, 2006, 25(2): 184-188. Liu Yuwang, Yu Xiaoliu, Chu Liuhuo, et al. Study on the workspace and parameter optimum of parallel mechanism[J]. Mechanical Science and Technology, 2006, 25(2): 184-188. (in Chinese)

[16] 赵云峰,程丽,赵永生. 3-UPS/S并联机构运动学分析及机构优化设计[J]. 机械设计, 2009, 26(1): 46-49. Zhao Yunfeng, Cheng Li, Zhao Yongsheng. Kinematic analysis of 3-UPS/S parallel mechanism and its optimization design[J]. Journal of Machine Design, 2009, 26(1): 46-49. (in Chinese)

[17] 夏禹, 黄海. Hexapod平台参数设计优化[J]. 航空学报, 2008, 29(5): 1168-1173. Xia Yu, Huang Hai. Design optimization for Hexapod platform parameters[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1168-1173. (in Chinese)

[18] Arsenault M, Boudreau R. Synthesis of planar parallel mechanisms while considering workspace, dexterity, stiffness and singularity avoidance[J]. Journal of Mechanical Design, 2006, 128(1): 69-78.

[19] 陈水赠. 6-SPS并联机器人研究及其结构参数优化. 南京: 南京理工大学机械工程学院, 2007. Chen Shuizeng. Research and structural parameter optimization of 6-SPS parallel robot. Nanjing: School of Mechanical Engineering, Nanjing University of Science and Technology, 2007. (in Chinese)

[20] 陈在礼, 陈学生, 谢涛. 用遗传算法解具有给定工作空间的并联机构综合问题[J]. 中国机械工程, 2002, 13(3): 187-190. Chen Zaili, Chen Xuesheng, Xie Tao. The synthesis of spatial parallel manipulators for a specific workspace with a genetic algorithm[J]. China Mechanical Engineering, 2002, 13(3): 187-190. (in Chinese)

[21] 余晓流, 高文斌. 基于遗传算法的2自由度并联机构的优化设计[J]. 机械设计, 2009, 26(8): 56-58. Yu Xiaoliu, Gao Wenbin. Optimization design on the two degree of freedom parallel mechanism based on genetic algorithm[J]. Journal of Machine Design, 2009, 26(8): 56-58. (in Chinese)

[22] 陈静, 刘强. 基于遗传算法的新型2-DOF并联机构的优化设计[J]. 机械设计, 2008, 25(2): 21-23. Chen Jing, Liu Qiang. Optimization design of new typed 2-DOF parallel mechanism based on genetic algorithm[J]. Journal of Machine Design, 2008, 25(2): 21-23. (in Chinese)

[23] Zhang Y F, Yao Y. Inverse kinematic optimal design of 6-DOF parallel manipulators[J]. Journal of Harbin Institute of Technology, 2008, 15(1): 18-22.

[24] Chen H, Chen W S, Liu J K. Optimal design of Stewart platform safety mechanism[J]. Chinese Journal of Aeronautics, 2007, 20(4): 370-377.

[25] 孙凡国, 黄伟. 基于粒子群算法的并联机构结构参数优化设计[J]. 机械设计与研究, 2006, 22(3): 16-18. Kong Fanguo, Huang Wei. Parameter optimal design of the parallel mechanism based on particle swarm optimization[J]. Machine Design and Research, 2006, 22(3): 16-18. (in Chinese)

[26] 杨维, 李岐强. 粒子群优化算法综述[J]. 中国工程科学, 2004, 6(5): 87-94. Yang Wei, Li Qiqiang. Survey on particle swarm optimization algorithm[J]. Engineering Science, 2004, 6(5): 87-94. (in Chinese)

[27] Advani S K, Nahon M A. Optimization of six-degree-of-freedom motion systems for flight simulators[J]. Journal of Aircraft, 1999, 36(5): 819-826.

[28] Advani S K. The kinematic design of flight simulator motion-bases. Toronto: International Center for Research in Simulation,Delft University of Technology, 1998.

[29] 黄真, 孔令富, 方跃法. 并联机构机器人学理论及控制 [M]. 北京: 机械工业出版社, 1997: 165-167. Huang Zhen, Kong Lingfu, Fang Yuefa. Structural theory and control of parallel mechanism[M]. Beijing: China Machine Press, 1997: 165-167. (in Chinese)

[30] Merlet J P. Designing a parallel manipulator for a specific workspace[J]. The International Journal of Robotics Research, 1997, 16(4): 545-556.

[31] Cecarelli M. An optimization problem approach for designing both serial and parallel manipulators//Proceedings of MUSME 2005—2nd International Symposium on Multibody Systems and Mechatronics. Uberlandia: MuSMe, 2005: 1-15.

[32] Merlet J P. Workspace—oriented methodology for designing a parallel manipulator//Proceedings of the 1996 IEEE International Conference on Robotics and Automation. Minnesota: IEEE, 1996: 3726-3731.

[33] Du Q, Faber V, Gunzburger M. Centroidal voronoi tessellations: applications and algorithms[J]. Society for Industrial and Applied Mathematics, 1999, 41(4): 637-646.

[34] Du Q, Wong T W. Numerical studies of MacQueen’s k-means algorithm for computing the centroidal Voronoi tessellations[J]. Computers and Mathematics with Applications, 2002, 44(3-4): 511-523.

[35] 冀翠莲, 周慎杰, 田蕴, 等. 基于质心Voronoi结构的布点算法及应用[J]. 机械工程学报, 2008, 44(1): 168-172. Ji Cuilian, Zhou Shenjie, Tian Yun, et al. Node placement algorithm and application based on the centroidal Voronoi tessellation[J]. Chinese Journal of Mechanical Engineering, 2008, 44(1): 168-172. (in Chinese)
Outlines

/