Avionics and Autocontrol

Optimal Design for Conformal Array Antennas with Respect to Element Polarization

Expand
  • Telecommunication Engineering Institute, Air Force Engineering University, Xi’an 710077, China

Received date: 2010-07-13

  Revised date: 2010-10-19

  Online published: 2011-04-25

Abstract

Due to the effect of the conformal carrier curvature, polarization diversity of the element patterns is a distinct feature of the conformal array antenna manifold. In order to improve the spatial parameter estimation performance by using the polarization diversity of the element patterns, this study formulated a rigorous model of the conformal array manifold with detailed consideration of polarization diversity of the element patterns which introduces the polarization parameters of the elements into the steering vector, and describes more completely the characteristics of the conformal array manifold. On this basis, the objective function for the optimal polarization design for the conformal array antennas is derived and the optimal design method for conformal array antenna with respect to element polarization is obtained by the alternating optimization theory. The simulation results with a conical conformal array antenna demonstrate that with given array geometry the theoretical performance of the direction parameter estimation can be improved effectively through optimizing element polarization.

Cite this article

QI Zisen, GUO Ying, WANG Buhong, HOU Wenlin . Optimal Design for Conformal Array Antennas with Respect to Element Polarization[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011 , 32(4) : 693 -701 . DOI: CNKI:11-1929/V.20101213.1757.004

References

[1] 朱建清. 电磁波工程[M]. 长沙:国防科学技术大学出版社,2000: 272-274. Zhu Jianqing. Electromagnetic wave engineering[M]. Changsha: National University of Defense Technology Press, 2000: 272-274. (in Chinese)

[2] Josefsson L, Persson P. Conformal array antenna theory and design[M]. Hoboken: John Wiley & Sons, Inc., 2006.

[3] Hwang S, Sarkar T K. Direction of arrival (DOA) estimation using a transformation matrix through singular value decomposition//Proceedings of IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetic. 2005: 353-356.

[4] Kim K, Sarkar T K. DOA estimation utilizing directive elements on a conformal surface//Proceedings of IEEE 2003 Radar Conference. 2003: 91-96.

[5] Worms J G. Superresolution with conformal broadband antenna arrays//Proceeding 2002 IEEE Radar Conference. 2002: 425-431.

[6] Worms J G. Spatial superresolution with conformal array antennas//Proceeding 2000 IEEE Radar Conference. 2000: 723-728.

[7] Do-Hong T, Fisch W, Russer P. Direction finding using spectral estimation with arbitrary antenna arrays //Proceedings of IEEE MTT-S International Microwave Symposium Digest. 2001: 1387-1390.

[8] 齐子森, 郭英, 王布宏, 等. 共形阵列天线MUSIC算法性能分析[J]. 电子与信息学报, 2008, 30(11): 2674-2677. Qi Zisen, Guo Ying, Wang Buhong, et al. Performance analysis of MUSIC for conformal array[J]. Journal of Electronics & Information Technology, 2008, 30(11): 2674-2677. (in Chinese)

[9] 王布宏, 郭英, 王永良, 等. 共形天线阵列流形的建模方法[J]. 电子学报, 2009, 37(3): 481-484. Wang Buhong, Guo Ying, Wang Yongliang, et al. Array manifold modeling for conformal array antenna[J]. Acta Electronica Sinica, 2009, 37(3): 481-484. (in Chinese)

[10] Wang B H, Guo Y, Wang Y L, et al. Frequency-invariant pattern synthesis of conformal array with low cross-polarization[J]. IET Microwaves, Antennas & Propagation, 2008, 2(5): 442-450.

[11] 齐子森, 郭英, 姬伟峰, 等. 锥面共形阵列天线盲极化DOA估计算法[J]. 电子学报, 2009, 37(9): 1919-1925. Qi Zisen, Guo Ying, Ji Weifeng, et al. Blind DOA estimation algorithm for conical conformal array antenna with respect to polarization diversity[J]. Acta Electronica Sinica, 2009, 37(9): 1919-1925. (in Chinese)

[12] 康行健. 天线原理与设计[M]. 北京:北京理工大学出版社, 1993: 32-41. Kang Xingjian. Antenna theory and design[M]. Beijing: Beijing Institute of Technology Press, 1993: 32-41. (in Chinese)

[13] Weiss A J, Friedlander B. Analysis of a signal estimation algorithm for diversely polarized arrays[J]. IEEE Transactions on Signal Processing, 1993, 41(8): 2628-2638.

[14] Friedlander B, Weiss A J. Direction finding in the presence of mutual coupling[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(3): 273-284.

[15] Weiss A J, Friedlander B. "Almost blind" steering vector estimation using second-order moments[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 1024-1027.
Outlines

/