Avionics and Autocontrol

Formation Inter-satellite Relative Positioning Spline Representation Model Based on Multi-frequency GNSS Observation

Expand
  • College of Science, National University of Defense Technology, Changsha 410073, China

Received date: 2010-07-06

  Revised date: 2010-08-20

  Online published: 2011-04-25

Abstract

A relative positioning spline representation model based on multi-frequency global navigation satellite system (GNSS) is proposed to meet the demand of precise inter-satellite relative positioning for formation flying satellites and the employment of multi-frequency signal measurement scheme of future GNSS. This model is based on the function approximation and parameter-saving modeling theory. The geometric relationship between the observation data and the estimated parameters is utilized and combined with the constraints of the continuous variation of the estimated parameters with epochs. The theoretical basis and simulation results of the relative positioning precision improvement are presented. The advantages of multi-frequency data over dual-frequency data and those of the spline representation model over the traditional point-wise model are shown. Under the condition of complex error simulation, the relative position of the inter-satellite estimates reaches the accuracy of millimeter level by applying the triple-frequency observation data and the spline representation model. Once the ambiguity resolutions are fixed to the correct value, using triple-frequency data can improve the accuracy up to 10% higher than the dual-frequency data, and using the spline representation model can improve the accuracy up to 80% higher than the point-wise model.

Cite this article

YAO Jing, NIE Pengcheng, YI Dongyun . Formation Inter-satellite Relative Positioning Spline Representation Model Based on Multi-frequency GNSS Observation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011 , 32(4) : 685 -692 . DOI: CNKI:11-1929/V.20101111.0909.000

References

[1] 吴宝林, 曹喜滨, 任子武. 一种长期稳定的卫星编队队形优化设计方法[J]. 航空学报, 2007, 28(1): 167-172. Wu Baolin, Cao Xibin, Ren Ziwu. A long-time stable formation optimal design method for satellite formation[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1): 167-172. (in Chinese)

[2] Yuan H, Zhou Y Q, Li J W, et al. New method of formation design for both GMTI and In-SAR using distributed satellites[J]. Journal of Electronics (China), 2007, 24(6): 821-827.

[3] Zhang R N, Li Y, Liu S L. System requirements and mission analysis for spaceborne SAR interferometry based on formation flying satellites// Proceedings of ISPRS08. 2008: 499-502.

[4] Yoon Y, Eineder M, Yague-Martinez N, et al. TerraSAR-X precise trajectory estimation and quality assessment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1859-1868.

[5] D’Amico S, Ardaens J S, Montenbruck O. Navigation of formation flying spacecraft using GPS: the PRISMA technology demonstration//Proceedings of ION GNSS. 2009: 2250-2264.

[6] 苗赢, 孙兆伟. 星载GPS测量数据预处理方法研究[J]. 航空学报, 2010, 31(3): 602-607. Miao Ying, Sun Zhaowei. Research on pre-processing method of satellite borne GPS measurement data[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 602-607. (in Chinese)

[7] 范国清, 王威, 郗晓宁. 联合CDGPS技术和星间相对测量进行编队星座状态确定[J]. 空间科学学报, 2005, 25(3): 218-223. Fan Guoqing, Wang Wei, Xi Xiaoning. Formation constellation states determination with carrier phase differential GPS and intra-satellite relative measurement[J]. Chinese Journal of Space Science, 2005, 25(3): 218-223. (in Chinese)

[8] 朱炬波. 不完全弹道测量的数据融合技术[J]. 科学通报, 2000, 45(20): 2236-2240. Zhu Jubo. Incomplete trajectory measurement data fusion technology[J]. Chinese Science Bulletin, 2000, 45(20): 2236-2240. (in Chinese)

[9] 刘洋, 易东云, 王正明, 等. 基于双频GPS观测信息和星间距离测量的高精度星间相对定位方法[J]. 宇航学报, 2007, 28(2): 315-321. Liu Yang, Yi Dongyun, Wang Zhengming, et al. The high-precision inter-satellite relative positioning method based on measurement information of dual-frequency GPS and inter-satellite distance[J]. Journal of Astronautics, 2007, 28(2): 315-321. (in Chinese)

[10] Kohlhase A O, Kroes R, D’Amico S. Interferometric baseline performance estimations for multistatic synthetic aperture radar configurations derived from GRCE GPS observations[J]. Journal of Geodesy, 2006, 80(1): 28-39.

[11] Kaplan E D, Hegarty C J. GPS原理与应用[M]. 寇艳红, 译. 北京: 电子工业出版社, 2007: 308-311. Kaplan E D, Hegarty C J. Understanding GPS: principles and applications[M]. Kou Yanhong, translated. Beijing: Publishing House of Electronics Industry, 2007: 308-311. (in Chinese)

[12] Tu X Q, Yao J, Gu D F, et al. Simulation of satellite-to-satellite tracking data of interferometric SAR based on GPS//Proceedings of Geoinformatics 2006: GNSS and Integrated Geospatial Applications. 2006: 64180O-1-64180O-9.
Outlines

/