For the multidisciplinary design optimization (MDO) of spacecraft with sub-vehicles, system mission requirements and disciplinary coupling relations are analyzed. Taking account of the design variables and constraints in payload, orbit and structure disciplines, the MDO model and related analysis models are built, with the comprehensive index involving the effective proximity region and total mass as the objective. Using the iSIGHT software to construct the solving architecture, the MDO model and analysis models are simulated and calculated with the collaborative optimization (CO) method based on penalty function, and reasonable results are obtained finally. The results prove the rationality of the MDO model and the effectiveness of using CO method to solve spacecraft MDO. The research process provides a typical example for the research of the spacecraft MDO and the disciplinary analysis models can be a reference for problems of the same kind.
WU Beibei, HUANG Hai, WU Wenrui
. Multidisciplinary Design Optimization of Main Parameters of Spacecraft with Sub-vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011
, 32(4)
: 628
-635
.
DOI: CNKI:11-1929/V.20110107.1205.000
[1] Budianto I A, Olds J R. Design and deployment of a satellite constellation using collaborative optimization[J]. Journal of Spacecraft and Rockets, 2004, 41(6): 956-963.
[2] 陈琪锋, 戴金海. 卫星星座系统多学科设计优化研究[J]. 宇航学报, 2003, 24(5): 502-509. Chen Qifeng, Dai Jinhai. Multidisciplinary design optimization of satellite constellation system[J]. Journal of Astronautics, 2003, 24(5): 502-509. (in Chinese)
[3] 谭春林, 庞宝君, 张凌燕, 等. 对地观测卫星总体参数多学科优化[J]. 北京航空航天大学学报, 2008, 34(5): 529-532. Tan Chunlin, Pang Baojun, Zhang Lingyan, et al. Multidisciplinary optimization in earth observation satellite main parameters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5): 529-532. (in Chinese)
[4] Ravanbakhsh A, Mortazavi M, Roshanian J. Multidisciplinary design optimization approach to conceptual design of a LEO earth observation microsatellite. AIAA-2008-3259, 2008.
[5] 赵勇, 颜力, 陈小前, 等. 基于MDO方法的月球探测卫星总体设计[J]. 上海航天, 2006, 37(2): 37-41. Zhao Yong, Yan Li, Chen Xiaoqian, et al. The system design of lunar exploration satellite using MDO[J]. Aerospace Shanghai, 2006, 37(2): 37-41. (in Chinese)
[6] Cullimore B, Panczak T, Baumann J, et al. Automated multidisciplinary optimization of a space-based telescope. SAE 2002-01-2445, 2002.
[7] 刘新建. 导弹总体分析与设计[M]. 长沙: 国防科技大学出版社, 2006: 13-16. Liu Xinjian. Missile system analysis and design[M]. Changsha: National Defense and Technology University Press, 2006: 13-16. (in Chinese)
[8] Bate R R. 航空动力学基础[M]. 吴鹤鸣, 李肇杰, 译. 北京: 北京航空航天大学出版社, 1990: 205-214. Bate R R. Fundamentals of astrodynamics[M]. Wu He-ming, Li Zhaojie, translated. Beijing: Beihang University Press, 1990: 205-214. (in Chinese)
[9] 闻新, 李东江. 美国自主交会技术验证卫星[J]. 中国航天, 2006(12): 31-34. Wen Xin, Li Dongjiang. American autonomous rendezvous technology demonstration satellite[J]. Aerospace China, 2006(12): 31-34. (in Chinese)
[10] 张凌燕. 机动卫星总体多学科设计优化研究. 北京: 北京航空航天大学, 2008. Zhang Lingyan. Multidisciplinary design optimization of maneuvering satellite. Beijing: Beihang University, 2008. (in Chinese)
[11] 鄢婉娟. 太阳同步轨道卫星电源系统设计计算方法研究[J]. 中国空间科学技术, 2001, 21(2): 19-25. Yan Wanjuan. Research of sun synchronization obit satellite power system design computation method[J]. Chinese Space Science and Technology, 2001, 21(2): 19-25. (in Chinese)
[12] Braun R D, Moore A A, Kroo I M. Use of the collaborative optimization architecture for launch vehicle design. AIAA-1996-4018, 1996.
[13] 韩明红. ICO多学科设计优化方法[J]. 北京航空航天大学学报, 2007, 33(8): 963-967. Han Minghong. ICO multidisciplinary design optimization method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(8): 963-967. (in Chinese)
[14] Engineous Software, Inc. iSIGHT supplemet collection (ESI_Techgen and MSC/Nastran). (2004-11-01). http://www.cadfamily.com/download/CAE/isight8//sup_collection.pdf.