Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (10): 129223-129223.doi: 10.7527/S1000-6893.2023.29223
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Bowei MENG, Hu MA(), Zhenjuan XIA, Changsheng ZHOU
Received:
2023-06-27
Revised:
2023-07-14
Accepted:
2023-08-15
Online:
2023-08-25
Published:
2023-08-25
Contact:
Hu MA
E-mail:mahuokok@163.com
Supported by:
CLC Number:
Bowei MENG, Hu MA, Zhenjuan XIA, Changsheng ZHOU. Numerical study on characterization of integrated rotating detonation combustor and turbine guide vane[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129223-129223.
1 | 严传俊, 范玮. 燃烧学[M]. 3版. 西安: 西北工业大学出版社, 2016: 74. |
YAN C J, FAN W. Combustion[M]. 3rd ed. Xi’an: Northwestern Polytechnical University Press, 2016: 74 (in Chinese). | |
2 | 李连波, 陈雄, 周长省, 等. 旋转爆震发动机与涡轮机的集成[J]. 科学技术与工程, 2020, 20(26): 10551-10556. |
LI L B, CHEN X, ZHOU C S, et al. Integration of rotating detonation engine with turbine[J]. Science Technology and Engineering, 2020, 20(26): 10551-10556 (in Chinese). | |
3 | FROLOV S M, AKSENOV V S, DUBROVSKII A V, et al. Energy efficiency of a continuous-detonation combustion chamber[J]. Combustion, Explosion, and Shock Waves, 2015, 51(2): 232-245. |
4 | 计自飞, 张会强, 谢峤峰, 等. 连续旋转爆震涡轮发动机热力过程与性能分析[J]. 清华大学学报(自然科学版), 2018, 58(10): 899-905. |
JI Z F, ZHANG H Q, XIE Q F, et al. Thermodynamic process and performance analysis of the continuous rotating detonation turbine engine[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(10): 899-905 (in Chinese). | |
5 | TOBITA A, FUJIWARA T, WOLANSKI P. Detonation engine and flying object provided therewith: US20050284127[P]. 2005-12-29. |
6 | ZHOU S B, MA Y, LIU F, et al. Effects of a straight guide vane on the operating characteristics of rotating detonation combustor[J]. Acta Astronautica, 2023, 203: 135-145. |
7 | ZHOU S B, MA H, LI S, et al. Effects of a turbine guide vane on hydrogen-air rotating detonation wave propagation characteristics[J]. International Journal of Hydrogen Energy, 2017, 42(31): 20297-20305. |
8 | WU Y W, WENG C S, ZHENG Q, et al. Experimental research on the performance of a rotating detonation combustor with a turbine guide vane[J]. Energy, 2021, 218: 119580. |
9 | WEI W L, WU Y W, WENG C S, et al. Influence of propagation direction on operation performance of rotating detonation combustor with turbine guide vane[J]. Defence Technology, 2021, 17(5): 1617-1624. |
10 | BACH E, BOHON M, PASCHEREIT C O, et al. Influence of nozzle guide vane orientation relative to RDC wave direction[C]∥Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019. |
11 | BACH E, STATHOPOULOS P, PASCHEREIT C O, et al. Performance analysis of a rotating detonation combustor based on stagnation pressure measurements[J]. Combustion and Flame, 2020, 217: 21-36. |
12 | SHEN D W, CHENG M, WU K, et al. Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor[J]. Acta Astronautica, 2022, 193: 90-99. |
13 | 张成名, 林志勇, 吴倩敏. 连续旋转爆震波与涡轮导向器叶栅相互作用数值研究[J]. 推进技术, 2022, 43(6): 199-207. |
ZHANG C M, LIN Z Y, WU Q M. Numerical study on interaction between continuous rotating detonation wave and turbine stator blades[J]. Journal of Propulsion Technology, 2022, 43(6): 199-207 (in Chinese). | |
14 | ASLI M, STATHOPOULOS P, PASCHEREIT C O. Aerodynamic investigation of guide vane configurations downstream a rotating detonation combustor[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(6): 061011. |
15 | BRAUN J, CUADRADO D G, ANDREOLI V, et al. Characterization of an integrated nozzle and supersonic axial turbine with a rotating detonation combustor[C]∥Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019. |
16 | LIU Z, BRAUN J, PANIAGUA G. Performance of axial turbines exposed to large fluctuations[C]∥Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2017. |
17 | LIU Z, BRAUN J, PANIAGUA G. Characterization of a supersonic turbine downstream of a rotating detonation combustor[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(3): 031501. |
18 | SOUSA J, PANIAGUA G, COLLADO-MORATA E. Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor[J]. Applied Energy, 2017, 195: 247-256. |
19 | SOUSA J, COLLADO-MORATA E, PANIAGUA G. Design and optimization of supersonic turbines for detonation combustors[J]. Chinese Journal of Aeronautics, 2022, 35(11): 33-44. |
20 | SOUSA J, PANIAGUA G. Entropy minimization design approach of supersonic internal passages[J]. Entropy, 2015, 17(8): 5593-5610. |
21 | AUNGIER R H. Turbine aerodynamics: Axial-flow and radial-flow turbine design and analysis[M]. New York: ASME, 2006: 143-144. |
22 | ZWEIFEL O. The spacing of turbo-machine blading, especially with large angular deflection[J]. Brown Boveri Review, 1945, 32(12): 436-444. |
23 | SUN J, ZHOU J, LIU S J, et al. Numerical investigation of a rotating detonation engine under premixed/non-premixed conditions[J]. Acta Astronautica, 2018, 152: 630-638. |
24 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
25 | 阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490. |
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese). | |
26 | 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5): 829-857. |
YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5): 829-857 (in Chinese). | |
27 | LIBBY P A. On the prediction of intermittent turbulent flows[J]. Journal of Fluid Mechanics, 1975, 68(2): 273-295. |
28 | JIN S, QI L, ZHAO N B, et al. Experimental and numerical research on rotating detonation combustor under non-premixed conditions[J]. International Journal of Hydrogen Energy, 2020, 45(16): 10176-10188. |
29 | 于维铭. 航空煤油替代燃料火焰传播速度与反应动力学机理研究[D]. 北京: 清华大学, 2014: 53-56. |
YU W M. Study on flame speed and chemical reaction mechanism for alternative fuels of aviation kerosene[D].Beijing: Tsinghua University, 2014: 53-56 (in Chinese). | |
30 | 肖保国, 杨顺华, 赵慧勇, 等. RP-3航空煤油燃烧的详细和简化化学动力学模型[J]. 航空动力学报, 2010, 25(9): 1948-1955. |
XIAO B G, YANG S H, ZHAO H Y, et al. Detailed and reduced chemical kinetic mechanisms for RP-3 aviation kerosene combustion[J]. Journal of Aerospace Power, 2010, 25(9): 1948-1955 (in Chinese). | |
31 | 冯文康, 郑权, 汪小卫, 等. 当量比对煤油-空气两相旋转爆轰波的影响[J]. 兵工学报, 2022, 43(6): 1304-1315. |
FENG W K, ZHENG Q, WANG X W, et al. Effect of equivalent ratio on two-phase rotating detonation wave of kerosene-air[J]. Acta Armamentarii, 2022, 43(6): 1304-1315 (in Chinese). | |
32 | 夏镇娟, 马虎, 卓长飞, 等. 圆盘结构下旋转爆震波的不稳定传播特性[J]. 航空学报, 2018, 39(2): 121438. |
XIA Z J, MA H, ZHUO C F, et al. Characteristics of unstable propagation of rotating detonation wave in plane-radial structure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121438 (in Chinese). | |
33 | CELIK I B, GHIA U, ROACHE P J, et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, Transactions of the ASME, 2008, 130(7): 078001. |
34 | DOLLING D S, MURPHY M T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield[J]. AIAA Journal, 1983, 21(12): 1628-1634. |
35 | TANG X M, WANG J P, SHAO Y T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame, 2015, 162(4): 997-1008. |
36 | LIU X Y, LUAN M Y, CHEN Y L, et al. Propagation behavior of rotating detonation waves with premixed kerosene/air mixtures[J]. Fuel, 2021, 294: 120253. |
37 | 李冬, 凌文辉, 张义宁, 等. 吸气式旋转爆震发动机热力循环过程分析与性能计算[J]. 推进技术, 2023, 44(4): 2202014. |
LI D, LING W H, ZHANG Y N, et al. Thermodynamic cycle analysis and performance calculation of air-breathing rotating detonation engine[J]. Journal of Propulsion Technology, 2023, 44(4): 2202014 (in Chinese). | |
38 | ZHANG S J, MA J Z, WANG J P. Theoretical and numerical investigation on total pressure gain in rotating detonation engine[J]. AIAA Journal, 2020, 58(11): 4866-4877. |
39 | FERNELIUS M H, GORRELL S E. Predicting efficiency of a turbine driven by pulsing flow[C]∥Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017. |
40 | PANIAGUA G, IORIO M C, VINHA N, et al. Design and analysis of pioneering high supersonic axial turbines[J]. International Journal of Mechanical Sciences, 2014, 89: 65-77. |
41 | KANTROWITZ A, DONALDSON CD. Preliminary investigation of supersonic diffusers: NACA ACR No. L5D20[R]. Washington, D.C.: NACA, 1945. |
[1] | TIAN Jia, ZHANG Jingzhou, TAN Xiaoming, WANG Yuanshuai. Thermal analysis model and validation for graded-composite thermal protection structure of rotating detonation combustor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 125271-125271. |
[2] | SUN Junlei, WANG Heping, ZHOU Zhou, LEI Shan. Aerodynamic optimization design of diamond-wing configuration UAV airfoil based on radar antenna installation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(11): 121072-121072. |
[3] | XU Xueyang, ZHUO Changfei, WU Xiaosong, LI Jie, MA Hu. Numerical simulation of injection schemes with separate supply of fuel and oxidizer effects on rotating detonation engine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(4): 1184-1195. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 67
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 183
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341