1 |
李挚. 绿色航空: 飞机系统的发展趋向探讨[J]. 黑龙江科技信息, 2013(11): 134.
|
|
LI Z. Discussion on the development trend of green aviation-aircraft system[J]. Heilongjiang Science and TechnologyInformation, 2013(11): 134 (in Chinese).
|
2 |
孙侠生. 绿色航空技术研究与进展[M]. 北京: 航空工业出版社, 2020.
|
|
SUN X S. Research and progress of green aviation technology[M]. Beijing: Aviation Industry Press, 2020 (inChinese).
|
3 |
林明, 蔡增杰, 朱武峰. 从绿色航空试论飞机系统的发展趋向和几点思考[J]. 液压气动与密封, 2012, 32(10): 1-5.
|
|
LIN M, CAI Z J, ZHU W F. Discussion and considerations on the development trend of aircraft system from the green aviation[J]. Hydraulics Pneumatics & Seals, 2012, 32(10): 1-5 (in Chinese).
|
4 |
徐向荣, 孙军帅. 民用飞机高升力系统浅析[J]. 中国制造业信息化, 2011, 40(19): 61-63, 71.
|
|
XU X R, SUN J S. Summary on the elevating system of civil aeroplane[J]. Manufacture Information Engineering of China, 2011, 40(19): 61-63, 71 (in Chinese).
|
5 |
刘沛清, 李玲. 大型飞机增升装置气动噪声研究进展[J]. 民用飞机设计与研究, 2019(1): 1-10.
|
|
LIU P Q, LI L. Development of investigation on high-lift device noise for large aircrafts[J]. Civil Aircraft Design & Research, 2019(1): 1-10 (in Chinese).
|
6 |
李伟鹏. 大型客机增升装置噪声机理与噪声控制综述[J]. 空气动力学学报, 2018, 36(3): 372-384, 409.
|
|
LI W P. Review of the mechanism and noise control of high-lift device noise[J]. Acta Aerodynamica Sinica, 2018, 36(3): 372-384, 409 (in Chinese).
|
7 |
PENDLETONE, FLICKP, PAULD, etal. The X-53 A summary of the active aeroelastic wing flight research program[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
|
8 |
Hall J M. Executive summary AFTI/F-111 mission adaptive wing: WRDC-TR-89-3083[R]. Wright-Patterson Air Force Base: Wright Research and Development Center, 1989.
|
9 |
胡挺, 王晓春, 任盈盈. 空客A350和波音787的对比研究[J]. 企业技术开发, 2015, 34(35): 54-56.
|
|
HU T, WANG X C, REN Y Y. Comparative study onairbus A350 and boeing 787[J]. Technological Development of Enterprise, 2015, 34(35): 54-56 (in Chinese).
|
10 |
马援. 强调性能优势旨在后来居上空客精心设计A350XWB[J]. 国际航空, 2007(8): 15-17.
|
|
MA Y. Some design details of A350XWB[J]. International Aviation, 2007(8): 15-17 (in Chinese).
|
11 |
李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术, 2015, 26(5): 1-10.
|
|
LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology, 2015, 26(5): 1-10 (in Chinese).
|
12 |
夏盛来, 何景武. TRIZ理论在飞机结构设计中的应用研究[J]. 机械设计与制造, 2008(12): 57-59.
|
|
XIA S L, HE J W. Applying research of TRIZ theory in airplane structural design[J]. Machinery Design & Manufacture, 2008(12): 57-59 (in Chinese).
|
13 |
檀润华. 创新设计: TRIZ: 发明问题解决理论[M]. 北京: 机械工业出版社, 2002: 1-2.
|
|
TAN R H. Innovative design: TRIZ: Theory of inventing problem solving[M]. Beijing: China Machine Press, 2002: 1-2 (in Chinese).
|
14 |
石鹏飞, 谭智勇, 陈洁. 先进民机飞控系统发展的需求与设计考虑[J]. 中国科学: 技术科学, 2018, 48(3): 237-247.
|
|
SHI P F, TAN Z Y, CHEN J. The development requirement and design considerations for advanced civil aircraft flight control system[J]. Scientia Sinica (Technologica), 2018, 48(3): 237-247 (in Chinese).
|
15 |
CIOBACA V, WILD J. An overview of recent DLR contributions on active flow—Separation control studies for high-lift configurations[J]. Journal Aerospace Lab, 2013(6): 1-11.
|
16 |
景博, 黄以锋, 张建业. 航空电子系统故障预测与健康管理技术现状与发展[J]. 空军工程大学学报(自然科学版), 2010, 11(6): 1-6.
|
|
JING B, HUANG Y F, ZHANG J Y. Status and perspectives of prognostics and health management technology of avionics system[J]. Journal of Air Force Engineering University (Natural Science Edition), 2010, 11(6): 1-6 (in Chinese).
|
17 |
REEDE, SCHUMANN J, MENGSHOELO. Verification and validation of system health management models using parametric testing: AIAA 2011-1445[R]. Reston: AIAA, 2011.
|
18 |
BIEDERMANN O, GEERLING G. Power control units with secondary controlled hydraulic motors—A new concept for application in aircraft high lift systems[C]∥ Recent Advances in Aerospce Hydraulics. 1998: 24-25.
|
19 |
LAMMERING T, SAUTERLEUTE A, HAUBER B, et al. Conceptual design of a battery-powered high lift system for single-aisle aircraft[C]∥ 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014.
|
20 |
倪迎鸽, 杨宇. 自适应机翼翼型变形的研究现状及关键技术[J]. 航空工程进展, 2018, 9(3): 297-308.
|
|
NI Y G, YANG Y. Research on the status and key technology in morphing airfoil of adaptive wings[J]. Advances in Aeronautical Science and Engineering, 2018, 9(3): 297-308 (in Chinese).
|
21 |
VASISTA S, TONG L Y, WONGK C. Realization of morphing wings: amultidisciplinary challenge[J]. Journal of Aircraft, 2012, 49(1): 11-28.
|
22 |
SATTI R, LI Y B, SHOCK R, et al. Computational aeroacoustic analysis of a high-lift configuration[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
|
23 |
KOTA S, HETRICK J A, OSBORN R, et al. Design and application of compliant mechanisms for morphing aircraft structures[C]∥ Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technologies. SanDiego: SPIE, 2003: 24-33.
|
24 |
MONNER H P. Realization of an optimized wing camber by using formvariable flap structures[J]. Aerospace Science and Technology, 2001, 5(7): 445-455.
|
25 |
黄建. 新型零泊松比蜂窝结构力学性能及其变弯度机翼应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
HUANG J. Mechanical performances of Anovel honeycomb design with zero Poisson’s ratio anditsapplicationincamber morphing wings[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
|
26 |
DEGASPARIA, RICCOBENEL, RICCIS. Design, manufacturing and wind tunnel validation of a morphing compliant wing[J]. Journal of Aircraft, 2018, 55(6): 2313-2326.
|
27 |
ARENA M, CONCILIOA, PECORAR. Aero-servo-elastic design of a morphing wing trailing edge system for enhanced cruise performance[J]. Aerospace Science and Technology, 2019, 86: 215-235.
|
28 |
白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443.
|
|
BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443 (in Chinese).
|
29 |
许云涛. 智能变形飞行器发展及关键技术研究[J]. 战术导弹技术, 2017(2): 26-33, 46.
|
|
XU Y T. Research on the development and key technology of smart morphing aircraft[J]. Tactical Missile Technology, 2017(2): 26-33, 46 (in Chinese).
|
30 |
赵稼祥. 民用航空和先进复合材料[J]. 高科技纤维与应用, 2007, 32(2): 6-10.
|
|
ZHAO J X. Civil aviation and advanced composite materials[J]. Hi-Tech Fiber & Application, 2007, 32(2): 6-10 (in Chinese).
|
31 |
马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2): 317-322.
|
|
MA L M, ZHANG J Z, YUE G Q, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 317-322 (in Chinese).
|
32 |
杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10.
|
|
DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10 (in Chinese).
|