ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (9): 27469-027469.doi: 10.7527/S1000-6893.2022.27469
• Reviews • Previous Articles Next Articles
Dongbin SONG1, Juzhuang YAN1, Wenjiang YANG1,2(), Mingliang BAI1, Rujing LIU3, Shaopeng WANG1, Yu LIU1, Aimei TIAN1
Received:
2022-05-19
Revised:
2022-06-02
Accepted:
2022-07-04
Online:
2023-05-15
Published:
2022-07-08
Contact:
Wenjiang YANG
E-mail:yangwjbuaa@buaa.edu.cn
Supported by:
CLC Number:
Dongbin SONG, Juzhuang YAN, Wenjiang YANG, Mingliang BAI, Rujing LIU, Shaopeng WANG, Yu LIU, Aimei TIAN. Technology development of high temperature superconducting machine for electric aviation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 27469-027469.
Table 1
Summary of technical features of different types of superconducting motors/generators
超导电机类型 | 结构特点 | 优点 | 缺点 | 技术成熟度 | ||
---|---|---|---|---|---|---|
超导电动机 | 径向间隙超导同步电动机 | 转子半超导 | 静置的铜电枢绕组,旋转的超导励磁绕组 | 提升气隙磁密,进而提高电机功率密度 | 滑环电刷磨损,超导引线漏热,转轴动密封以及转矩传递漏热,严重限制工作转速 | 已应用在混合电动飞机样机中 |
第1类定子半超导 | 旋转的铜电枢绕组,静置的超导励磁绕组 | 大幅降低了超导冷却系统复杂程度 | 滑环电刷磨损严重,铜损耗增大 | 实验室研制阶段 | ||
第2类定子半超导 | 静置的超导电枢绕组,旋转的永磁励磁体 | 高载流密度,低温系统结构简单,无需考虑低温动密封 | 电枢产生交流损耗对低温冷却要求极高,限制工作转速 | 实验室研制阶段 | ||
全超导 | 静置的超导电枢绕组,旋转的超导励磁绕组 | 高载流密度,大气隙磁密,小型化、轻质化 | 包含以上半超导电机所有缺点 | 实验室研制阶段 | ||
轴向间隙超导同步电动机 | 整体结构扁平,转子为盘式结构 | 可以通过模块化设计增大电机容量 | 边缘离心力较大,受滑环电刷限制,工作转速不高 | 实验室研制阶段 | ||
超导异步电动机 | 转子采用超导导条与端环实现自短路结构 | 调速能力强,输出转矩高 | 低温旋转动密封受限,超导-正常-超导的转变过程 | 实验室研制阶段 | ||
超导发电机 | 轴-径向间隙超导同步发电机 | 在转子端部增加轴向超导励磁结构 | 无低温旋转动密封问题、增大功率密度、可以高速工作 | 电机整体冷却结构更加复杂 | 实验室研制阶段 | |
超导单极发电机 | 静置的超导励磁绕组,常温实心整体转子 | 高转速、高功率密度,超导磁体不受离心力 | 漏磁较为严重,需不断优化 | 实验室研制阶段 | ||
超导爪极发电机 | 静置的超导励磁绕组同极磁爪转子 | 定子铁芯结构紧凑 | 转子结构复杂,会产生力学和电磁不稳定性 | 实验室研制阶段 | ||
超导磁通切换发电机 | 励磁绕组与电枢绕组均布置在定子槽内 | 转子结构简单,利于高转速工作 | 槽满率较低、电机体积大,低温旋转动密封问题 | 实验室研制阶段 | ||
超导磁齿轮发电机 | 磁极代替齿轮使内外转子无接触传递扭矩 | 降低噪声、受离心力较小、转矩密度可控 | 电机体积和重量大,运行效率低 | 实验室研制阶段 |
Table 2
Summary of parameters for typical superconducting motor/generator prototypes
超导电机类型 | 国家 | 年份 | 容量 /kW | 转速 /(r·min-1) | 端电压 /V | 额定电流 /A | 频率 /Hz | 超导材料 | 冷却方式 | 工作温度 /K | 效率 /% | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
超 导 电 动 机 | 径向 间隙超导同步电动 机 | 转子 半超导 | 美国 | 2008 | 36 500 | 120 | 7 200 | 1 400 | 60 | Bi2223/Ag | 气氦 | 30 | 97.5 |
德国 | 2010 | 4 000 | 120 | 6 600 | 357 | 60 | Bi2223/Ag | 气氦 | 25 | 94.6 | |||
日本 | 2014 | 3 000 | 160 | 1 000 | 200 | 80 | Bi2223/Ag | 气氦 | 30 | 98 | |||
韩国 | 2016 | 5 000 | 213 | 6 600 | 460 | 10.6 | GdBCO | 气氖 | <30 | 98 | |||
英国 | 2010 | 100 | 3 000 | 300 | Bi2223/Ag | 过冷液氮 | <77 | ||||||
欧盟 | 2020 | 3 600 | 15 | 710 | 280 | GdBCO | 制冷机 | <25 | 92 | ||||
俄罗斯 | 2014 | 200 | 1 500 | 450 | 165 | 75 | YBCO | 过冷液氮 | 65~77 | 96.3 | |||
俄罗斯 | 2017 | 1 000 | 600 | 690 | 500 | 50 | YBCO | 过冷液氮 | 65~77 | >97 | |||
中国 | 2021 | 300 | 3 000 | 50 | GdBCO | 气氦 | 30 | ||||||
中国 | 2020 | 500 | 1 500 | 550 | 75 | YBCO | 液氮 | 77 | 96.33 | ||||
第1类定 子半超导 | 法国 | 2010 | 25 | 750 | 230 | 40 | 50 | YBCO | 液氦 | 25 | |||
第2类定子半超导 | 中国 | 2012 | 400 | 250 | 690 | 20.8 | YBCO | 过冷液氮 | 70 | 93.5 | |||
中国 | 2014 | 2.5 | 300 | 41.7 | 20 | 10 | Bi2223/Ag | 液氮 | 82 | ||||
全超导 | 英国 | 2008 | 8.4 | 1 500 | 115 | 35 | 75 | YBCO | 液氮 | 77 | 94.5 | ||
日本 | 2021 | 1 | 625 | 25 | 100 | 10.4 | YBCO | 过冷液氮 | 65~77 | ||||
轴向间隙超导同步电动机 | 日本 | 2006 | 400 | 250 | 618 | 16.7 | Bi2223/Ag | 过冷液氮 | 66~70 | ||||
超导异步电动机 | 日本 | 2020 | 50 | 1 500 | 400 | 50 | Bi2223/Ag | 液氮 | 77 | 94 | |||
超 导 发 电 机 | 超导单极发电机 | 美国 | 2008 | 1300 | 10 500 | 266 | 1 460 | 525 | Bi2223/Ag | 制冷机 | 30 | 97 | |
中国 | 2018 | 30 | 10 200 | 510 | 32 | 510 | YBCO | 过冷液氮 | 65~77 | ||||
超导爪极发电机 | 俄罗斯 | 2016 | 21.7 | 9 000 | 99 | 125 | 450 | YBCO | 液氮 | 77 | |||
超导磁通切换发电机 | 中国 | 2018 | 6 | 2 000 | 100 | 100 | Bi2223/Ag | 液氮 | 77 |
1 | WAHLS R. N+3 technologies and concepts[R]. Washington, D.C.: NASA Ames Research Center, 2010. |
2 | HIGH L G O A R. Flightpath 2050: Europe’s vision for aviation, maintaining global leadership & serving society’s needs[R]. High Level Group on Aviation Research, 2011. |
3 | AIR T A G. Waypoint 2050: Balancing growth in connectivity with a comprehensive global air transport response to the climate emergency [R]. Air Transport Action Group, 2020. |
4 | FEDDERSEN M. AC loss in MgB2-based fully superconducting electric machines[D]. Champaign: University of Illinois at Urbana-Champaign, 2017. |
5 | 赵军, 唐弋棣. 大涵道比民用涡扇发动机总体性能方案研究[C]∥第五届空天动力联合会议暨中国航天第三专业信息网第41届技术交流会, 2020: 157-168. |
ZHAO J, TANG Y D. Study on overall performance scheme of high bypass ratio civil turbofan engine [C]∥The 5th Joint Conference on Aerospace Power and the 41st Technical Exchange of China Third Aerospace Information Network, 2020:157-168. | |
6 | LUONGO C A, MASSON P J, NAM T, et al. Next generation more-electric aircraft: A potential application for HTS superconductors[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1055-1068. |
7 | 李开省. 电动飞机核心技术研究综述[J]. 航空科学技术, 2019, 30(11): 8-17. |
LI K S. Summary of research on core technology of electric aircraft[J]. Aeronautical Science & Technology, 2019, 30(11): 8-17 (in Chinese). | |
8 | 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1): 021651. |
KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651 (in Chinese). | |
9 | 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68. |
HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68 (in Chinese). | |
10 | 胡雨. 通用飞机油电混合动力系统设计与优化[D]. 沈阳: 沈阳航空航天大学, 2014. |
HU Y. Design and optimization of a general aircraft’s hybrid electric propulsion system[D]. Shenyang: Shenyang Aerospace University, 2014 (in Chinese). | |
11 | BRADLEY M, DRONEY C K. Subsonic ultra green aircraft research: Phase 2. volume 2; hybrid electric design exploration: CR-218704[R]. Washington, D.C.: NASA, 2015. |
12 | JANSEN R, BOWMAN C, JANKOVSKY A, et al. Overview of NASA electrified aircraft propulsion (EAP) research for large subsonic transports[C]∥53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2017: 4701. |
13 | DELROSARIO R. A future with hybrid electric propulsion systems: A NASA perspective[R]. Washington, D.C.: NASA, 2014. |
14 | BAIK S K, KWON Y K, KIM H M, et al. Electrical performance analysis of HTS synchronous motor based on 3D FEM[J]. Physica C: Superconductivity and Its Applications, 2010, 470(20): 1763-1767. |
15 | MOULIN R, LEVEQUE J, DURANTAY L, et al. Superconducting multistack inductor for synchronous motors using the diamagnetism property of bulk material[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 146-153. |
16 | LI L Y, CAO J W, KOU B Q, et al. Design of the HTS permanent magnet motor with superconducting armature winding[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 5200704. |
17 | QU T M, SONG P, YU X Y, et al. Development and testing of a 2.5 kW synchronous generator with a high temperature superconducting stator and permanent magnet rotor[J]. Superconductor Science and Technology, 2014, 27(4): 044026. |
18 | SCHREINER F, LIU Y Z, NOE M. Investigation of a six-pole stator system using No-insulation 2nd generation HTS coils for a 10 kW generator demonstrator[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 1-5. |
19 | JIANG Y, PEI R, XIAN W, et al. The design, magnetization and control of a superconducting permanent magnet synchronous motor[J]. Superconductor Science and Technology, 2008, 21(6): 065011. |
20 | QU T M, LI Y F, SONG P, et al. Design study of a 10-kW fully superconducting synchronous generator[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 1-5. |
21 | KOVALEV K, IVANOV N, ZHURAVLEV S, et al. Development and testing of 10 kW fully HTS generator[J]. Journal of Physics: Conference Series, 2020, 1559(1): 012137. |
22 | SASA H, IWAKUMA M, YOSHIDA K, et al. Experimental evaluation of 1 kW-class prototype REBCO fully superconducting synchronous motor cooled by subcooled liquid nitrogen for E-aircraft[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 1-6. |
23 | MATSUZAKI H, KIMURA Y, OHTANI I, et al. An axial gap-type HTS bulk synchronous motor excited by pulsed-field magnetization with vortex-type armature copper windings[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2222-2225. |
24 | SUGIMOTO H, TSUDA T, MORISHITA T, et al. Development of an axial flux type PM synchronous motor with the liquid nitrogen cooled HTS armature windings[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 1637-1640. |
25 | WENG F J, ZHANG M, LAN T, et al. Fully superconducting machine for electric aircraft propulsion: Study of AC loss for HTS stator[J]. Superconductor Science and Technology, 2020, 33(10): 104002. |
26 | PATEL A, BASKYS A, MITCHELL-WILLIAMS T, et al. A trapped field of 17.7 T in a stack of high temperature superconducting tape[J]. Superconductor Science and Technology, 2018, 31(9): 09LT01. |
27 | DURRELL J H, DENNIS A R, JAROSZYNSKI J, et al. A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel[J]. Superconductor Science and Technology, 2014, 27(8): 082001. |
28 | NAKAMURA T, OKUNO M, YOSHIKAWA M, et al. Quantitative characterization of nonlinear impedance and load characteristic of 50-kW-class fully superconducting induction/synchronous motor[J]. Physica C: Superconductivity and Its Applications, 2020, 578: 1353662. |
29 | SEKIGUCHI D, NAKAMURA T, MISAWA S, et al. Trial test of fully HTS induction/synchronous machine for next generation electric vehicle[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 5200904. |
30 | LI W L, SONG C Y, CAO J C, et al. Performance analysis of axial-radial flux type fully superconducting synchronous motor[C]∥ 2010 International Conference on Power System Technology. Piscataway: IEEE Press, 2010: 1-6. |
31 | SIVASUBRAMANIAM K, LASKARIS E T, LOKHANDWALLA M, et al. Development of a high speed multi-megawatt HTS generator for airborne applications[C]∥ 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century. Piscataway: IEEE Press, 2008: 1-4. |
32 | SONG D B, YANG W J, LIU Y, et al. Simulation calculation of a superconducting monopolar generator for airborne applications[C]∥ CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018). London: IET, 2018: 1-6. |
33 | KOVALEV K L, VERZHBITSKY L G, KOZUB S S, et al. Brushless superconducting synchronous generator with claw-shaped poles and permanent magnets[C]∥ IEEE Transactions on Applied Superconductivity. Piscataway: IEEE Press, 2016: 1-4. |
34 | KEYSAN O, MUELLER M A. A transverse flux high-temperature superconducting generator topology for large direct drive wind turbines[J]. Physics Procedia, 2012, 36: 759-764. |
35 | WANG Y B, FENG Q, LI X L, et al. Design, analysis, and experimental test of a segmented-rotor high-temperature superconducting flux-switching generator with stationary seal[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 9047-9055. |
36 | LIN F, QU R H, LI D W. A novel fully superconducting geared machine[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5. |
37 | CHEN X Y. Overview of patent technologies for practical high temperature superconducting materials[J]. Electronics World, 2018(6):88-89 (in Chinese). |
38 | 汪京荣. 第二代高温超导线材研究进展[J]. 低温物理学报, 2005, 27(S1): 870-876. |
WANG J R. Progresses in the second generation HTS wire[J]. Chinese Journal of Low Temperature Physics, 2005, 27(S 1): 870-876 (in Chinese). | |
39 | POLIKARPOVA M V, LUKYANOV P A, ABDYUKHANOV I M, et al. Bending strain effects on the critical current in Cu and Cu⁃Nb⁃stabilized YBCO-coated conductor tape[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 1-4. |
40 | 马衍伟. 实用化超导材料研究进展与展望[J]. 物理, 2015, 44(10): 674-683. |
MA Y W. Recent developments of practical superconducting materials[J]. Physics, 2015, 44(10): 674-683 (in Chinese). | |
41 | EISTERER M, MOON S H, FREYHARDT H C. Current developments in HTSC coated conductors for applications[J]. Superconductor Science and Technology, 2016, 29(6): 060301. |
42 | DU J, SUN J L, NIE Y, et al. Status and progress on an HTS strand with quasi-isotropic critical current[J]. CSEE Journal of Power and Energy Systems, 2019, 7(1): 150-155. |
43 | LUISA C. Electromechanical characteristics of REBCO tapes for their use in the high-current twisted stacked-tapes cable (TSTC) conductor for magnet applications[C]∥CERN-TE Magnet Seminar, 2014. |
44 | 赵裕, 周俊杰, 张恒光, 等. 超导卢瑟福电缆的尺寸设计与制造工艺[J]. 电线电缆, 2019(2): 16-18, 27. |
ZHAO Y, ZHOU J J, ZHANG H G, et al. The size design and manufacturing technology of superconducting Rutherford cable[J]. Wire & Cable, 2019(2): 16-18, 27 (in Chinese). | |
45 | SCHLACHTER S I, GOLDACKER W, GRILLI F, et al. Coated conductor Rutherford cables (CCRC) for high-current applications: Concept and properties[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 3021-3024. |
46 | DE MARZI G, CELENTANO G, AUGIERI A, et al. Experimental and numerical studies on current distribution in stacks of HTS tapes for cable-in-conduit-conductors[J]. Superconductor Science and Technology, 2021, 34(3): 035016. |
47 | 程锦闽, 汪惟源, 刘柏良, 等. 交流高温超导电缆构型研究综述[J]. 低温与超导, 2019, 47(6): 45-50. |
CHENG J M, WANG W Y, LIU B L, et al. Review of research on the configuration of AC high temperature superconducting cable[J]. Cryogenics & Superconductivity, 2019, 47(6): 45-50 (in Chinese). | |
48 | 韩正男. 高温超导电枢绕组电机关键技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
HAN Z N. Research on key technologies of high temperature superconducting armature winding motor[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). | |
49 | YANG J P, ZHENG J, WEI B G, et al. Numerical study on AC loss reduction effect of the narrow REBCO tape in different size coils[C]∥ 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). Piscataway: IEEE Press, 2020: 1-2. |
50 | MACHURA P, LI Q. AC loss reduction through flux diverters for superconducting wireless charging coils at high frequencies[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(3): 1-10. |
51 | KAWAGOE A, KUDOU K, KANEMARU R, et al. Winding configurations and AC loss of superconducting synchronous REBCO motors[J]. Journal of Physics: Conference Series, 2020, 1559(1): 012144. |
52 | 张凯贺. 超导电枢的特点及其设计方法研究[D]. 杭州: 浙江大学, 2019: 84-87. |
ZHANG K H. Research on features and design method of the superconducting armature windings[D]. Hangzhou: Zhejiang University, 2019: 84-87 (in Chinese). | |
53 | KOMIYA M, AIKAWA T, YOSHIDA K, et al. Numerical analysis on the influence of armature winding configuration on AC loss of 10 MW fully superconducting generators of electric aircrafts[J]. Journal of Physics: Conference Series, 2019, 1293(1): 012074. |
54 | MICHAEL P C, KVITKOVIC J, PAMIDI S V, et al. Development of MgB2-cabled conductors for fully superconducting rotating electric machines[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1-5. |
55 | ANVAR V A, ILIN K, YAGOTINTSEV K A, et al. Bending of CORC® cables and wires: Finite element parametric study and experimental validation[J]. Superconductor Science and Technology, 2018, 31(11): 115006. |
56 | BAIK S, KWON Y, PARK S, et al. Performance analysis of a superconducting motor for higher efficiency design[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5202004. |
57 | 吴磊,孙大新,刘中国,王辉.磁流体密封技术简介[J].液压气动与密封,2015,35(8):70-73. |
WU L, SUN D X, LIU Z G, Wang H. Introduction of magnetic fluid sealing technology[J]. Hydraulics pneumatics & seals, 2015,35(8):70-73 (in Chinese). | |
58 | AYAI N, YAMAZAKI K, KIKUCHI M, et al. Electrical and mechanical properties of DI-BSCCO type HT reinforced with metallic sheathes[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 3014-3017. |
59 | SUNG LEE T, JIN HWANG Y, LEE J, et al. The effects of co-wound Kapton, stainless steel and copper, in comparison with no insulation, on the time constant and stability of GdBCO pancake coils[J]. Superconductor Science and Technology, 2014, 27(6): 065018. |
60 | NAGAYA S, WATANABE T, TAMADA T, et al. Development of high strength pancake coil with stress controlling structure by REBCO coated conductor[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 4601204. |
61 | OTTEN S, DHALLÉ M, GAO P, et al. Enhancement of the transverse stress tolerance of REBCO Roebel cables by epoxy impregnation[J]. Superconductor Science and Technology, 2015, 28(6): 065014. |
62 | HAHN S, KIM Y, LING J Y, et al. No-insulation coil under time-varying condition: Magnetic coupling with external coil[J]. IEEE Transactions on Applied Superconductivity: A Publication of the IEEE Superconductivity Committee, 2013, 23(3): 4601705. |
63 | KIM S B, SAITOU A, JOO J H, et al. The normal-zone propagation properties of the non-insulated HTS coil in cryocooled operation[J]. Physica C: Superconductivity and Its Applications, 2011, 471(21-22): 1428-1431. |
64 | BADEL A, OKADA T, TAKAHASHI K, et al. Detection and protection against quench/local thermal runaway for a 30 T cryogen-free magnet[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 1-5. |
65 | GODDARD K F, LUKASIK B, SYKULSKI J K. Alternative designs of high-temperature superconducting synchronous generators[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(6): 3805-3811. |
66 | MALÉ G, LUBIN T, MEZANI S, et al. 2D analytical modeling of a wholly superconducting synchronous reluctance motor[J]. Superconductor Science and Technology, 2011, 24(3): 035014. |
67 | KRINGS A, BOGLIETTI A, CAVAGNINO A, et al. Soft magnetic material status and trends in electric machines[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2405-2414. |
68 | AL-MOSAWI M K, BEDUZ C, YANG Y. Construction of a 100 kVA high temperature superconducting synchronous generator[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2182-2185. |
69 | KIM S, LEE C, BANG J, et al. Manipulation of screening currents in an (RE)Ba2Cu3O7– x superconducting magnet[J]. Materials Research Express, 2018, 6(2): 026004. |
70 | WILSON M N. 100 years of superconductivity and 50 years of superconducting magnets[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 3800212. |
71 | 张卓然, 王东, 花为. 混合励磁电机结构原理、设计与运行控制技术综述及展望[J]. 中国电机工程学报, 2020, 40(24): 7834-7850, 8221. |
ZHANG Z R, WANG D, HUA W. Overview of configuration, design and control technology of hybrid excitation machines[J]. Proceedings of the CSEE, 2020, 40(24): 7834-7850, 8221 (in Chinese). | |
72 | HARAN K S, KALSI S, ARNDT T, et al. High power density superconducting rotating machines—development status and technology roadmap[J]. Superconductor Science and Technology, 2017, 30(12): 123002. |
73 | ZHOU Y, SU H, XIE F, et al. Rotor flexible support components design of a high temperature superconducting motor[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 1-5. |
74 | LIU Y Z, QU R H, ZHU Z, et al. Analysis on the performances of a rotor screen for a 12 MW superconducting direct-drive wind generator[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(5): 1-5. |
75 | KIM H J, LEE T S, KIM J, et al. Design and experimental evaluation on kA-class HTS binary superconducting current lead using a liquid nitrogen bath under short-term current test[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 1-5. |
76 | SONG X W, BÜHRER C, BRUTSAERT P, et al. Ground testing of the world’s first MW-class direct-drive superconducting wind turbine generator[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 757-764. |
77 | WEN H M, BAILEY W, GODDARD K, et al. Performance test of a 100 kW HTS generator operating at 67 K–77 K[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1652-1655. |
78 | HARA S, IWAMI Y, KAWASAKI R, et al. Development of liquid hydrogen cooling system for a rotor of superconducting generator[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 1-5. |
79 | LIU L Y, CHEN Y, ZHANG H Y, et al. Quench behavior comparison between solid nitrogen and conduction cooled REBCO coated conductor[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(8): 1-5. |
80 | PEREZ A, VAN DER WOUDE R R, DEKKER R. Rotor cooling concept for the ASuMED superconductive motor[J]. IOP Conference Series: Materials Science and Engineering, 2019, 502: 012139. |
81 | 刘哲凯, 李开进, 陈建文. 电机高压绝缘简析[J]. 科技传播, 2012, 4(16): 137-138. |
LIU Z K, LI K J, CHEN J W. Brief analysis of high voltage insulation of motor[J]. Science and technology communication, 2012,4(16): 137-138 (in Chinese). | |
82 | YANAGISAWA Y, SATO K, PIAO R, et al. Removal of degradation of the performance of an epoxy impregnated YBCO-coated conductor double pancake coil by using a polyimide-electrodeposited YBCO-coated conductor[J]. Physica C: Superconductivity, 2012, 476: 19-22. |
83 | TROCIEWITZ U P, DALBAN-CANASSY M, HANNION M, et al. 35.4 T field generated using a layer-wound superconducting coil made of REBa2Cu 3O7-x coated conductor[DB/OL]. arXiv preprint: 1110.6814, 2011. |
84 | UGLIETTI D, CHOI S, KIYOSHI T. Design and fabrication of layer-wound YBCO solenoids[J]. Physica C: Superconductivity and Its Applications, 2010, 470(20): 1749-1751. |
85 | GUPTA R, ANERELLA M, COZZOLINO J, et al. Second generation HTS quadrupole for FRIB[J]. IEEE Transactions on Applied Superconductivity, 2010, 21(3): 1888-1891. |
86 | WANG Y, SONG H, XU D, et al. An equivalent circuit grid model for no-insulation HTS pancake coils[J]. Superconductor Science and Technology, 2015, 28(4): 045017. |
87 | 隋银德. 高压电机绝缘系统的研究[D]. 哈尔滨: 哈尔滨理工大学, 2004. |
SUI Y D. Study of insulation system for HV electric machine[D]. Harbin: Harbin University of Science and Technology, 2004 (in Chinese). | |
88 | 黄晓峰. 浅析高压电机运行时的绝缘措施[J]. 河南科技, 2013(19): 87-88. |
HUANG X F. Analysis on insulation measures of high voltage motor in operation[J]. Journal of Henan Science and Technology, 2013(19): 87-88 (in Chinese). | |
89 | 张东东, 陈健, 王洪波, 等. 10kV级高压电机定子绕组绝缘技术的探讨[J]. 大电机技术, 2014(3): 41-43. |
ZHANG D D, CHEN J, WANG H B, et al. Discussion of insulation system of stator coils for 10 kV electric machine[J]. Large Electric Machine and Hydraulic Turbine, 2014(3): 41-43 (in Chinese). | |
90 | 付长禄, 杜敏娟, 丁国东. 国内外高电压少胶VPI绝缘的现状及发展方向[J]. 科技信息(科学教研), 2007(13): 224, 212. |
FU C L, DU M J, DING G D. Present situation and development direction of high voltage and less glue VPI insulation at home and abroad[J]. Science Information, 2007(13): 224, 212 (in Chinese). | |
91 | BRADLEY M, DRONEY C K. Subsonic ultra green aircraft research phase II: N+4 advanced concept development: CR-2012-217556[R]. Washington, D.C.: NASA, 2012 |
92 | KIM H DAE, FELDER J L, TONG M T, et al. Turboelectric distributed propulsion benefits on the N3-X vehicle[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6): 558-561. |
93 | LUGG R H. Magnetic advanced generation jet electric turbine: US8365510[P]. 2013-02-05. |
94 | 刘腾跃, 刘金超, 李明. 美国卢格系列高超声速组合发动机概念研究[J]. 航空动力, 2020(3): 15-18. |
LIU T Y, LIU J C, LI M. Research progress of lugg’s companies’ new engines for supersonic airliners[J]. Aerospace Power, 2020(3): 15-18 (in Chinese). | |
95 | ISMAGILOV F, VARYUKHIN A, VAVILOV V, et al. Electric machines development process for aviation hybrid propulsion systems[C]∥IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2020: 955-960. |
96 | PATEL A, CLIMENTE-ALARCON V, BASKYS A, et al. Design considerations for fully superconducting synchronous motors aimed at future electric aircraft[C]∥ 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC). Piscataway: IEEE Press, 2019: 1-6. |
97 | GRILLI F, BENKEL T, HÄNISCH J, et al. Superconducting motors for aircraft propulsion: The advanced superconducting motor experimental demonstrator project[J]. Journal of Physics: Conference Series, 2020, 1590(1): 012051. |
98 | MALKIN P, PAGONIS M. The design of fully superconducting power networks for future aircraft propulsion[C]∥49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013. |
99 | PALMER J, SHEHAB E. Modelling of cryogenic cooling system design concepts for superconducting aircraft propulsion[J]. IET Electrical Systems in Transportation, 2016, 6(3): 170-178. |
100 | OKONKWO P P C. Conceptual design methodology for blended wing body aircraft[D]. Cranfield: Cranfield University, 2016. |
101 | BRELJE B J, MARTINS J R R A. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches[J]. Progress in Aerospace Sciences, 2019, 104: 1-19. |
102 | SCHAEFFER S B. Cryogenics and superconductivity for aircraft, explained[EB/OL]. (2021-03-29)[2021-5-31]. . |
103 | BERG F, PALMER J, MILLER P, et al. HTS system and component targets for a distributed aircraft propulsion system[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1-7. |
104 | BOLAM R C, VAGAPOV Y, ANUCHIN A. A review of electrical motor topologies for aircraft propulsion[C]∥2020 55th International Universities Power Engineering Conference (UPEC). Piscataway: IEEE Press, 2020: 1-6. |
[1] | Weikang HUANG, Zhuoran ZHANG, Xingya DA, Peibo YUAN, Huamin GAO. Thermal characteristics of dual drive motors for high speed counter⁃rotating ducted fan [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 129048-129048. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341