1 |
齐朝晖, 常进官, 王刚. 周边桁架式可展开天线展开分析与控制[J]. 宇航学报, 2014, 35(1): 61-68.
|
|
QI Z H, CHANG J G, WANG G. Analysis and control of deployment process for hoop truss deployable antenna[J]. Journal of Astronautics, 2014, 35(1): 61-68 (in Chinese).
|
2 |
孙延超, 李传江, 常雅杰, 等. 空间智能桁架的有限时间振动抑制控制[J]. 哈尔滨工业大学学报, 2018, 50(10): 27-34.
|
|
SUN Y C, LI C J, CHANG Y J, et al. Finite-time vibration control of space intelligent truss[J]. Journal of Harbin Institute of Technology, 2018, 50(10): 27-34 (in Chinese).
|
3 |
WU Y, CAO D Q, LIU M, et al. Natural characteristic and vibration analysis of nonlinear articulated multi-beam ring structure for modeling ring truss antenna under base excitation[J]. Applied Mathematical Modelling, 2022, 108: 787-806.
|
4 |
FAN L M, HUANG H, SUN L, et al. Robust attitude control for a rigid-flexible-rigid microsatellite with multiple uncertainties and input saturations[J]. Aerospace Science and Technology, 2019, 95: 105443.
|
5 |
LIU M, CAO D Q, ZHU D F. Coupled vibration analysis for equivalent dynamic model of the space antenna truss[J]. Applied Mathematical Modelling, 2021, 89: 285-298.
|
6 |
AZIMI M, FARZANEH JOUBANEH E. Dynamic modeling and vibration control of a coupled rigid-flexible high-order structural system: A comparative study[J]. Aerospace Science and Technology, 2020, 102: 105875.
|
7 |
和兴锁, 邓峰岩, 张烈霞, 等. 大型空间刚柔耦合组合体的动力学建模[J]. 机械科学与技术, 2004, 23(5): 543-545, 607.
|
|
HE X S, DENG F Y, ZHANG L X, et al. Dynamics modeling of large coupled rigid-flexible space platform system[J]. Mechanical Science and Technology, 2004, 23(5): 543-545, 607 (in Chinese).
|
8 |
LU S L, QI X Z, HU Y, et al. Deployment dynamics of large space antenna and supporting arms[J]. IEEE Access, 2019, 7: 69922-69935.
|
9 |
袁秋帆, 王超磊, 齐乃明, 等. 单翼大挠性航天器全局模态动力学建模及试验[J]. 宇航学报, 2019, 40(4): 369-377.
|
|
YUAN Q F, WANG C L, QI N M, et al. Global dynamic modeling for a spacecraft with single large flexible structure and experimental study[J]. Journal of Astronautics, 2019, 40(4): 369-377 (in Chinese).
|
10 |
PAN K Q, LIU J Y. Investigation on the choice of boundary conditions and shape functions for flexible multi-body system[J]. Acta Mechanica Sinica, 2012, 28(1): 180-189.
|
11 |
MU R N, TAN S J, WU Z G, et al. Coupling dynamics of super large space structures in the presence of environmental disturbances[J]. Acta Astronautica, 2018, 148: 385-395.
|
12 |
LIU Y L, WU S N, ZHANG K M, et al. Parametrical excitation model for rigid-flexible coupling system of solar power satellite[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2674-2681.
|
13 |
于亚男, 胡存明, 贺从园, 等. 基于高阶滑模变结构的挠性航天器大角度姿态机动控制研究[J]. 上海航天, 2016, 33(3): 48-54.
|
|
YU Y N, HU C M, HE C Y, et al. Variable structure control study for large-angle attitude maneuver of flexible spacecraft based on high order sliding mode[J]. Aerospace Shanghai, 2016, 33(3): 48-54 (in Chinese).
|
14 |
WANG E M, WU S N, XUN G B, et al. Active vibration suppression for large space structure assembly: a distributed adaptive model predictive control approach[J]. Journal of Vibration and Control, 2021, 27(3-4): 365-377.
|
15 |
常雅杰. 智能桁架卫星的振动抑制与姿态控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
|
|
CHANG Y J. Vibration suppression and attitude control methods for intelligent truss satellite[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese).
|
16 |
苏晨. 大型空间桁架结构在轨构建动力学建模与振动控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
SU C. Research on dynamic modeling and vibration control of large space truss structure on-orbit construction[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese).
|
17 |
MIAO Y, HWANG I, LIU M, et al. Adaptive fast nonsingular terminal sliding mode control for attitude tracking of flexible spacecraft with rotating appendage[J]. Aerospace Science and Technology, 2019, 93: 105312.
|
18 |
苗双全, 丛炳龙, 刘向东. 基于输入成形的挠性航天器自适应滑模控制[J]. 航空学报, 2013, 34(8): 1906-1914.
|
|
MIAO S Q, CONG B L, LIU X D. Adaptive sliding mode control of flexible spacecraft on input shaping[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1906-1914 (in Chinese).
|
19 |
ELISHAKOFF I, BOUTUR D. Rigorous implementation of the Galerkin method for uniform and stepped columns[J]. AIAA Journal, 2020, 58(5): 2261-2268.
|
20 |
MEIROVITCH L. Fundamentals of vibrations[M]. Chicago: Waveland Press, Inc, 2002.
|
21 |
ZUO Z Y, HAN Q L, NING B D. Fixed-time cooperative control for high-order multi-agent systems[M]∥ Fixed-Time Cooperative Control of Multi-Agent Systems. Cham: Springer, 2019: 69-83.
|
22 |
JIANG B Y, HU Q L, FRISWELL M I. Fixed-time attitude control for rigid spacecraft with actuator saturation and faults[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1892-1898.
|
23 |
ZUO Z Y. Nonsingular fixed-time consensus tracking for second-order multi-agent networks[J]. Automatica, 2015, 54: 305-309.
|
24 |
MOULAY E, LÉCHAPPÉ V, BERNUAU E, et al. Robust fixed-time stability: application to sliding-mode control[J]. IEEE Transactions on Automatic Control, 2022, 67(2): 1061-1066.
|