1 |
CLOHESSY W H, WILTSHIRE R S. Terminal guidance system for satellite rendezvous[J]. Journal of the Aerospace Sciences, 1960, 27(9): 653-658.
|
2 |
罗亚中. 空间最优交会路径规划策略研究[D]. 长沙: 国防科学技术大学, 2007: 1-2.
|
|
LUO Y Z. Study on space optimal rendezvous trajectory planning approach[D]. Changsha: National University of Defense Technology, 2007: 1-2 (in Chinese).
|
3 |
詹虎. 载人航天工程巡天空间望远镜大视场多色成像与无缝光谱巡天[J]. 科学通报, 2021, 66(11): 1290-1298.
|
|
ZHAN H. The wide-field multiband imaging and slitless spectroscopy survey to be carried out by the survey space telescope of China manned space program[J]. Chinese Science Bulletin, 2021, 66(11): 1290-1298 (in Chinese).
|
4 |
TĂIATU C M. The space race on sustainability: Business and legal challenges for on-orbit-servicing[C]∥ On-Orbit Servicing: Next Generation of Space Activities. Berlin: Springer, 2020: 91-121.
|
5 |
XU M, WANG Y, XU S J. On the existence of J2 invariant relative orbits from the dynamical system point of view[J].Celestial Mechanics and Dynamical Astronomy, 2012, 112(4): 427-444.
|
6 |
DANG Z H, ZHANG H. Linearized relative motion equations through orbital element differences for general Keplerian orbits[J]. Astrodynamics, 2018, 2(3): 201-215.
|
7 |
彭超, 温昶煊, 高扬. 地月空间DRO与HEO(3∶1/2∶1)共振轨道延拓求解及其稳定性分析[J]. 载人航天, 2018, 24(6): 703-718.
|
|
PENG C, WEN C X, GAO Y. DRO and HEO (3∶1/2∶1) resonant orbits in cislunar space calculated by continuation and their stability analysis[J]. Manned Spaceflight, 2018, 24(6): 703-718 (in Chinese).
|
8 |
WHITLEY R, MARTINEZ R. Options for staging orbits in cislunar space[C]∥ 2016 IEEE Aerospace Conference. Piscataway: IEEE Press, 2016: 1-9.
|
9 |
BEZROUK C, PARKER J S. Long term evolution of distant retrograde orbits in the Earth-Moon system[J]. Astrophysics and Space Science, 2017, 362(9): 176.
|
10 |
SCHEERES D J, HSIAO F Y, VINH N X. Stabilizing motion relative to an unstable orbit: Applications to spacecraft formation flight[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 62-73.
|
11 |
JUNG S. Formation flying along unstable libration point orbits using switching Hamiltonian structure-preserving control[J]. Acta Astronautica, 2019, 158: 1-11.
|
12 |
HOWELL K C. Control of satellite imaging formations in multi-body regimes[J]. Acta Astronautica, 2009, 64(5-6): 554-570.
|
13 |
李鹏. 拉格朗日点附近编队飞行动力学与控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 65-69.
|
|
LI P. Study on dynamics and control of spacecraft formation flying near Lagrange point[D]. Harbin: Harbin Institute of Technology, 2009: 65-69 (in Chinese).
|
14 |
GARCIA-TABERNER L. FEFF methodology for spacecraft formations reconfiguration in the vicinity of libration points[J]. Acta Astronautica, 2010, 67(7-8): 810-817.
|
15 |
PENG H J, LI C. Bound evaluation for spacecraft swarm on libration orbits with an uncertain boundary[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2690-2698.
|
16 |
PERNICKA H J, CARLSON B A, BALAKRISHNAN S N. Spacecraft formation flight about libration points using impulsive maneuvering[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5): 1122-1130.
|
17 |
QI R, XU S J, XU M. Impulsive control for formation flight about libration points[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 484-496.
|
18 |
GÓMEZ G, MARCOTE M, MASDEMONT J J, et al. Zero relative radial acceleration cones and controlled motions suitable for formation flying[J]. The Journal of the Astronautical Sciences, 2005, 53(4): 413-431.
|
19 |
HÉRITIER A. Dynamical evolution of natural formations in libration point orbits in a multi-body regime[J]. Acta Astronautica, 2014, 102: 332-340.
|
20 |
HOWELL K C, MARCHAND B G. Natural and non-natural spacecraft formations near the L1 and L2 libration points in the Sun-Earth/Moon ephemeris system[J]. Dynamical Systems, 2005, 20(1): 149-173.
|
21 |
SIMANJUNTAK T, NAKAMIYA M, KAWAKATSU Y. Design of natural loose formation flying around halo orbits[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2012, 55(4): 254-262.
|
22 |
周敬, 胡军, 张斌. 圆型限制性三体问题相对运动解析研究[J]. 宇航学报, 2020, 41(2): 154-165.
|
|
ZHOU J, HU J, ZHANG B. Analytical solutions for relative motion in the circular restricted three-body problem[J]. Journal of Astronautics, 2020, 41(2): 154-165 (in Chinese).
|
23 |
FRANZINI G, INNOCENTI M. Relative motion dynamics in the restricted three-body problem[J]. Journal of Spacecraft and Rockets, 2019, 56(5): 1322-1337.
|
24 |
CONTE D, SPENCER D B. Preliminary study on relative motion and rendezvous between spacecraft in the restricted three-body problem: AAS 16-369[R] Washington, D.C.: AAS, 2016.
|
25 |
UEDA S, MURAKAMI N, IKENAGA T. A study on rendezvous trajectory design utilizing invariant manifolds of cislunar periodic orbits: AIAA-2017-1729[R]. Reston: AIAA, 2017.
|
26 |
陈冠华, 杨驰航, 张晨,等. 地月空间的远距离逆行轨道族及其分岔研究[J]. 北京航空航天大学学报, 2022,48(12):2576-2588.
|
|
CHEN G H, YANG C H, ZHANG C, et al. Distant retrograde orbits and its bifurcations in Earth-Moon system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022,48(12):2576-2588 (in Chinese)
|
27 |
CARMEN C. Ordinary differential equations with applications[M]. New York: Springer, 2020: 187-224.
|