[1] 张灿, 林旭斌, 胡冬冬, 等. 2018年国外高超声速飞行器技术发展综述[J]. 飞航导弹, 2019(2):1-5, 15. ZHANG C, LIN X B, HU D D, et al. A survey of foreign hypersonic vehicle technology development in 2018[J]. Aerodynamic Missile Journal, 2019(2):1-5, 15(in Chinese). [2] 胡冬冬. 2019年美国高超声速武器防御体系建设动向及发展研究[J]. 战术导弹技术,2020(1):1-8, 14. HU D D. Research on the development of hypersonic weapon defense system in the United States in year 2019[J]. Tactical Missile Technology, 2020(1):1-8, 14(in Chinese). [3] 秦雷. 临近空间领域面临的重大控制科学问题研究[J]. 战术导弹技术, 2017(1):85-92, 97. QIN L. Research on important control scientific problems of near space hypersonic vehicles[J]. Tactical Missile Technology, 2017(1):85-92, 97(in Chinese). [4] 李君龙, 李阳, 刘成红, 等. 临近空间防御高精度制导控制面临的技术挑战[J]. 战术导弹技术, 2016(3):7-11. LI J L, LI Y, LIU C H, et al. Problem and challenge on the high-precision guidance and controldenfensing in the near space[J]. Tactical Missile Technology, 2016(3):7-11(in Chinese). [5] 韦刚, 刘昌云, 姚小强, 等. 临近空间高超声速飞行器拦截关键问题研究[J]. 飞航导弹, 2016(8):12-16. WEI G, LIU C Y, YAO X Q, et al. Research on key problems for interception of near-space hypersonic vehicle[J]. Aerodynamic Missile Journal, 2016(8):12-16(in Chinese). [6] 葛致磊, 孙琦. 交会角对制导性能的影响[J]. 宇航学报, 2008, 29(5):1492-1495. GE Z L,SUN Q. Effects of interception angle on the performance of guidance[J]. Journal of Astronautics, 2008, 29(5):1492-1495(in Chinese). [7] 李庚泽, 魏喜庆, 王社阳. 基于轨迹预测的高超声速飞行器拦截中/末制导研究[J]. 上海航天, 2017, 34(6):7-12. LI G Z, WEI X Q, WANG S Y. Study on trajectory predicting and midcourse/terminal guidance against hypersonic vehicle[J]. Aerospace Shanghai, 2017, 34(6):7-12(in Chinese). [8] 周聪, 闫晓东,唐硕. 圆弧预测变系数显式拦截中制导[J]. 航空学报, 2019,40(10):323122. ZHOU C, YAN X D, TANG S. Explicit guidance law with varying gain and circular pre-diction for mid-course interception[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):323122(in Chinese). [9] 马自茹, 魏明英, 李运迁. 控制量权重可变的主动段最优中制导律[J]. 现代防御技术, 2018, 46(6):44-50. MA Z R, WEI M Y, LI Y Q. Active section optimal midcourse guidance law with controlled amount variable weights[J]. Modern Defence Technology, 2018, 46(6):44-50(in Chinese). [10] 熊少锋, 魏明英, 赵明元, 等. 考虑导弹速度时变的角度约束最优中制导律[J]. 控制理论与应用, 2018, 35(2):248-257. XIONG S F, WEI M Y, ZHAO M Y, et al. Impact angle constrained optimal midcourse guidance law for missiles of time-varying speed[J]. Control Theory & Applications, 2018, 35(2):248-257(in Chinese). [11] DWIVEDI P N, BHALE P G, BHATTACHARYYA A, et al. Lead angle constrained optimal midcourse guidance[C]//AIAA Guidance, Navigation, and Control (GNC) Conference. Reston, VA:AIAA, 2013. [12] 周觐, 王华吉, 赵炜, 等. 拦截高速目标的中制导次优弹道修正[J]. 北京理工大学学报, 2019,39(8):839-845. ZHOU J, WANG H J, ZHAO W, et al. Suboptimal midcourse trajectory modification for hypersonic target interception[J]. Transactions of Beijing Institute of Technology, 2019, 39(8):839-845(in Chinese). [13] DWIVEDI P N, BHATTACHARYA A, PADHI R. Suboptimal midcourse guidance of interceptors for high-speed targets with alignment angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3):860-877. [14] ZHOU J, LEI H M, ZHANG D Y. Online optimal midcourse trajectory modification algorithm for hypersonic vehicle interceptions[J]. Aerospace Science and Technology, 2017, 63:266-277. [15] 张荣升, 陈万春. THAAD增程型拦截弹预测制导方法[J]. 北京航空航天大学学报, 2021,47(4):863-874. ZHANG R S, CHEN W C.Predictive guidance method of THAAD-ER interceptor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4):863-874(in Chinese). [16] FOREMAN D, TOURNES C, SHTESSEL Y. Interceptor missile control-A new look at boost and mid-course[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2010. [17] LIU X F, LU P, PAN B F. Survey of convex optimization for aerospace applications[J]. Astrodynamics, 2017, 1(1):23-40. [18] SARMAH P, CHAWLA C, PADHI R. A nonlinear approach for reentry guidance of reusable launch vehicles using model predictive static programming[C]//16th Mediterranean Conference on Control and Automation Congress Centre. Piscataway, NJ:IEEE, 2008:41-46. [19] YAN X D, HE L. Unpowered approach and landing trajectory planning using second-order cone programming[J]. Aerospace Science and Technology, 2020, 101:105841. [20] SAGLIANO M. Pseudospectral convex optimization for powered descent and landing[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2):320-334. [21] LIU X F, SHEN Z J, LU P. Exact convex relaxation for optimal flight of aerodynamically controlled missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4):1881-1892. [22] ZHOU C, YAN X D, TANG S. Generalized quasi-spectral model predictive static programming method using Gaussian quadrature collocation[J]. Aerospace Science and Technology, 2020, 106:106134. [23] KUMAR P, BHATTACHARYA A, PADHI R. Mini-mum drag optimal guidance with final flight path angle constraint against Re-entry targets[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2018. [24] 陈克俊,刘鲁华,孟云鹤. 远程火箭飞行动力学与制导[M]. 北京:国防工业出版社, 2014:228. CHEN K J, LIU L H, MENG Y H. Launch vehicle flight dynamics and guidance[M]. Beijing:National Defense Industry Press, 2014:228(in Chinese). [25] 叶泽浩, 毕红葵, 谭贤四, 等. 改进的平方根UKF在再入滑翔目标跟踪中的应用[J]. 宇航学报, 2019, 40(2):215-222. YE Z H, BI H K, TAN X S, et al. Improved square root UKF applying to reentry glide target tracking[J]. Journal of Astronautics, 2019, 40(2):215-222(in Chinese). |