ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2020, Vol. 41 ›› Issue (12): 23716-023716.doi: 10.7527/S1000-6893.2020.23716
• Review • Previous Articles Next Articles
HUANG Hongyan, SU Lijun, LEI Chaoshuai, LI Jian, ZHANG Enshuang, LI Wenjing, YANG Jieying, ZHAO Yingmin, PEI Yuchen, ZHANG Hao
Received:
2019-12-09
Revised:
2020-02-04
Published:
2020-08-03
CLC Number:
HUANG Hongyan, SU Lijun, LEI Chaoshuai, LI Jian, ZHANG Enshuang, LI Wenjing, YANG Jieying, ZHAO Yingmin, PEI Yuchen, ZHANG Hao. Reusable thermal protective materials: application and research progress[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(12): 23716-023716.
[1] ESSER B, BARCENA J, KUHN M, et al. Innovative thermal management concepts and material solutions for future space vehicles[J]. Journal of Spacecraft and Rockets, 2016, 53(6):1051-1061. [2] GLASS D. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicle:AIAA-2008-2682[R]. Reston:AIAA, 2008. [3] BARBER T A, MAJDALANI J, MAICKE B A. Review of gaps, obstacles, and technological challenges in hypersonic applications[J]. International Journal of Energetic Materials and Chemical Propulsion, 2018, 17(1):13-55. [4] MOSES P L, RAUSCH V L, NGUYEN L T, et al. NASA hypersonic flight demonstrators-overview, status, and future plans[J]. Acta Astronautica, 2004, 55(3-9):619-630. [5] JOHNSON S M, GASCH M, LAWSON J W. Recent developments in ultra high temperature ceramics at NASA AMES:AIAA-2009-7219[R]. Reston:AIAA, 2009. [6] STEELANT J. ATLLAS:Aero-thermal loaded material investigations for high-speed vehicles:AIAA-2008-2582[R]. Reston:AIAA, 2008. [7] MIYAGI H, MIYAGAWA H, MONJI T, et al. Combined cycle engine research in Japanese HYPR project:AIAA-1995-2751[R]. Reston:AIAA, 1995. [8] KUMAR S, MAHULIKAR S P. Selection of materials and design of multilayer lightweight passive thermal protection system[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(2):021003. [9] HALD H, ORTELT M, FISCHER I. Effusion cooled CMC rocket combustion chamber:AIAA-2005-3229[R]. Reston:AIAA, 2005. [10] DING R, WANG J, HE F, et al. Numerical investigation on the performances of porous matrix with transpiration and film cooling[J]. Applied Thermal Engineering, 2019, 146:422-431. [11] JING T, HE G, LI W, et al. Flow and thermal analyses of regenerative cooling in non-uniform channels for combustion chamber[J]. Applied Thermal Engineering, 2017, 119:89-97. [12] MYERS D E, MARTIN C J, BLOSSER M L. Parametric weight comparison of advanced metallic, ceramic tile, and ceramic blanket thermal protection systems:NASA/TM-2000-210289[R]. Washington D.C.:NASA, 2000. [13] YANG X H, TAN S C, DING Y J, et al. Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins[J]. International Communications in Heat and Mass Transfer, 2017, 87:118-124. [14] LANGSTON S L. Optimization of a hot structure aeroshell and nose cap for mars atmospheric entry:AIAA-2016-5594[R]. Reston:AIAA, 2016. [15] BLET N, LIPS S, SARTRE V. Heats pipes for temperature homogenization:A literature review[J]. Applied Thermal Engineering, 2017, 118:490-509. [16] RICCIO A, RAIMONDO F, SELLITTO A, et al. Optimum design of ablative thermal protection systems for atmospheric entry vehicles[J]. Applied Thermal Engineering, 2017, 119:541-552. [17] 邢亚娟, 孙波, 高坤, 等. 航天飞行器热防护系统及防热材料研究现状[J]. 宇航材料工艺, 2018, 48(4):9-15. XING Y J, SUN B, GAO K, et al. Research status of thermal protection system and thermal protection materials for aerospace vehicles[J]. Aerospace Materials & Technology, 2018, 48(4):9-15(in Chinese). [18] 王曼, 杨家勇, 何二锋, 等. 高温合金前缘热防护结构隔热性能分析[J]. 航空学报, 2016, 37(1):53-58. WANG M, YANG J Y, HE E F, et al. Analysis and design of leading edge using metallic thermal protection system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):53-58(in Chinese). [19] JENKINS D R. X-15:Extending the frontiers of flight:NASA/SP-2007-56[R]. Washington:NASA, 2007. [20] JENKINS D R. Hypersonics before the shuttle:a concise history of the X-15 research airplane:NASA/SP-2000-4518[R]. Washington:NASA, 2000. [21] MERLIN P W. Design and development of the Blackbird:challenges and lessons learned:AIAA-2013-1534[R]. Reston:AIAA, 2013. [22] JENKINS J M, QUINN R D. A historical perspective of the YF-12A thermal loads and structures program:NASA/TM-1996-104317[R]. Washington D.C.:NASA, 1996. [23] LAUNIUS R D. Designing the Shuttle:Living within the Political System," in space shuttle legacy[M]. Reston:AAIA, 2014:25-45. [24] SYNDER R E. Dynamic and static modeling of the shuttle orbiter's thermal protection system[J]. Journal of the Acoustical Society of America, 1982, 70(S1):S75. [25] CURRY D M, LATCHEN J W, WHISENHUNT G B. Space shuttle leading edge structural development:AIAA-1983-0483[R]. Reston:AIAA, 1983. [26] WILLIAMS S D, CURRY D M, CHAO D C, Ablation analysis of the shuttle orbiter oxidation protected reinforced carbon-carbon[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(3):478-485. [27] FASANELLA E L, KAREN H L, JONATHAN G, et al. Test and analysis correlation of form impact onto space shuttle wing leading edge RCC Panel 8[C]//8th International LS-DYNA Users Conference, 2004:1-11. [28] RIVERS H E, GLASS D E. Advances in hot-structure development[C]//5th European Workshop on Thermal Protection Systems and Hot Structures, 2006:1-11. [29] COOPER P A, HOLLOWAY P F. The shuttle tile story[J]. Astronautics and Aeronautics, 1981, 19(1):24-36. [30] HUANG J, YAO W X. High-temperature mechanical properties of strain isolation pad for thermal protection system[J]. Journal of Spacecraft and Rockets, 2018, 55(4):848-855. [31] JENKINS D R. Protecting the body:the orbiter's thermal protection system, in space shuttle legacy[M]. Reston:AAIA, 2014:111-135. [32] WILLIAMS J G. Structural tests on space shuttle thermal protection system constructed with non-densified and densified LI-900 and LI-2200 tile:NASA/TM-1981-81903[R]. Washington D.C.:NASA, 1981. [33] FROSCH R A, LEISER D B, GOLDSTEIN H E, et al. Fibrous refractory composite insulation:United States. US4148962A[P]. 1978-09-08. [34] STRAUSS E L, JOHNSON C W, GRAESE R W, et al. Producibility of fibrous refractory composite insulation, FRCI 40-20[J]. Ceramic Engineering and Science Proceedings, 1983, 4:611-623. [35] MARNEL S, DAN L, HOWARD G. Alumina-enhanced thermal barrier:NASA/ARC-1989-12135[R]. Washington D.C.:NASA, 1989. [36] LEISER D B, SMITH M, STEWART D A. Options for improving rigidized ceramic heat shields[J]. Ceramic Engineering and Science Proceedings, 1985, 6:757-768. [37] HENG V, HINKLE K A, SANTOS M A. Rigid insulation and method of producing same:United States. US6716782B2[P]. 2004-04-06. [38] GOLDSTEIN H E, LEISER D B, KATVALA V. Reaction cured borosilicate glass coating for low-density fibrous silica insulation[J]. Borate Glasses, 1978, 12:623-634. [39] LEISER D B, STEWART D A, DIFIORE R, et al. Flight performance of a functionally:gradient material, tufi, on shuttle orbiter:20020042186[R]. Washington D.C.:NASA, 2001. [40] MILOS F, SQUIRE T. Thermal stress analysis of X-34 wing leading edge tile TPS[C]//31st Thermophysics Conference, 1996:1-20. [41] SQUIRE T H, RASKY D J, MILOS F S, et al. TPS materials and costs for future reusable launch vehicles[J]. Journal of Spacecraft and Rockets, 2000, 38(2):294-296. [42] BLUM Y D, JOHNSON S M, CHEN P. New approaches to waterproofing of space shuttle insulating materials:NASA/CR-1997-204289[R]. Washington D.C.:NASA, 1997. [43] MARSHALL L, CORPENING G, SHERRILL R. A chief engineer's view of the NASA X-43A scramjet flight test:AIAA-2005-3332[R]. Reston:AIAA, 2005. [44] HANK J, MURPHY J, MUTZMAN R. The X-51A scramjet engine flight demonstration program:AIAA-2008-2540[R]. Reston:AIAA, 2008. [45] MUI D, CLANCY H M. Development of a protective ceramic coating for shuttle orbiter advanced flexible reusable surface insulation[C]//Proceedings of the 9th Annual Conference on Composites and Advanced Ceramic Materials:Ceramic Engineering and Science Proceedings, 2008.p.793-805. [46] BARNEY A, WHITTINGTON C A, EILERTSON B, et al. Thermal insulating conformal blanket:United States. US6652950B2[P]. 2003-11-25. [47] GONG C, BING C, GU L. Comparison study of RBCC powered suborbital reusable launch vehicle concepts:AIAA-2015-3606[R]. Reston:AIAA, 2015. [48] KOURTIDES D A, PITTS W C, GOLDSTEIN H E, et al. Composite flexible blanket insulation:United States. US5038693A[P]. 1991-08-13. [49] 周志勇, 马彬, 张萃, 等. X-37B轨道试验飞行器可重复使用热防护系统综述[J]. 航天器工程, 2016, 25(4):95-101. ZHOU Z Y, MA B, ZHANG C, et al. Reusable thermal protection system for orbital test vehicle X-37B[J]. Spacecraft Engineering, 2016, 25(4):95-101(in Chinese). [50] 子力. X-33可复用运载器验证计划进展[J]. 中国航天, 1999(4):19-22. ZI L. Progress in the verification plan of reusable launch vehicle X-33[J]. Aerospace China, 1999(4):19-22(in Chinese). [51] 解维华, 张博明, 杜善义. 重复使用飞行器金属热防护系统的有限元分析与设计[J]. 航空学报, 2006, 27(4):650-656. XIE W H, ZHANG B M, DU S Y. Analysis and design of metallic thermal protection systems for reusable launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4):650-656(in Chinese). [52] LOCKHEED M C.X-33. Phase 2:NASA/CR-1998-208192[R]. Washington D.C.:NASA, 1998. [53] BLOSSER M L, CHEN R R, SCHMIDT I H, et al. Advanced metallic thermal protection system development:AIAA-2002-0504[R]. Reston:AIAA, 2002. [54] BLOSSER M L. Fundamental modeling and thermal performance issues for metallic thermal protection system concept[J]. Journal of Spacecraft and Rockets, 2004, 41(2):195-206. [55] NG W H, FRIEDMANN P P, WAAS A M. Thermomechanical analysis of a thermal protection system with defects and heat shorts:AIAA-2006-2212[R]. Reston:AIAA, 2006. [56] TUMINO G, MANCUSO S. The success of the ESA Intermediate experimental vehicle program[J]. Acta Astronautica, 2016, 124:1. [57] BUFFENOIR F, ZEPPA C, PICHON T, et al. Development and flight qualification of the C-SiC thermal protection systems for the IXV[J]. Acta Astronautica, 2016, 124:85-89. [58] PICHON T, SOYRIS P, FOUCAULT A, et al. C/SiC based rigid external thermal protection system for future reusable launch vehicles:generic shingle, pre-X/FLPP anticipated development test studies[C]//5th European Workshop on Thermal Protection Systems and Hot Structures, 2006. [59] SOYRIS P, FOUCAULT A, PARETEAU J M, et al. C/SiC based rigid external thermal protection system for future reusable launch vehicles:generic shingle, pre-X/FLPP anticipated development test studies:AIAA-2005-3375[R]. Reston:AIAA, 2005. [60] KELLER K, PFEIFFER E, HANDRICK K, et al. Advanced High Temperature Insulations[C]//5th European Workshop on Thermal Protection Systems and Hot Structures, 2006. [61] HURWITZ F I. Thermal protection systems (TPSs)[M]. New York:John Wiley & Sons, 2010:2-11. [62] DANIEL L. X-37 flight demonstrator project:capabilities for future space transportation system development[C]//55th International Astronautical Congress, 2004.p.1-8. [63] MIKULA D F K, HOLTHAUS M, JENSEN T E, et al. X-37 flight demonstrator system safety program and challenges:AIAA-2000-5073[R]. Reston:AIAA, 2000. [64] PAEZ C. The development of the X-37 re-entry vehicle:AIAA-2004-4186[R]. Reston:AIAA, 2004. [65] GHOSHROY S. The X-37B:Backdoor weaponization of space[J]. Bulletin of the Atomic Scientists, 2015, 27:19-29. [66] GRANTZ A C. X-37B orbital test vehicle and derivatives:AIAA-2011-7315[R]. Reston:AIAA, 2011. [67] DAVID J. X-37 flight demonstrator:a building block in NASA's future access to space; X-37 flight demonstrator:orbital vehicle technology development approach:200400-41357[R]. Washington D.C.:NASA, 2004. [68] JOHNSON S M. Thermal protection materials and systems:past, present, and future:NASA-ARC-E-DAA-TN9472[R]. Washington D.C.:NASA, 2013. [69] STEWART D A, LEISER D B. Toughened uni-piece, fibrous, reinforced, oxidization-resistant composite:United States. US7314648B1[P]. 2008-01-01. [70] LEISER D B, HSU M S, CHEN T S. Refractory oxidative-resistant ceramic carbon insulation:United States. US6225248B1[P]. 2001-05-01. [71] LEISER D B, SMITH M, CHURCHWARD R A, et al. Toughened uni-piece fibrous insulation:United States. US005079082A[P]. 1992-06-07. [72] 鲁芹, 胡龙飞, 罗晓光, 等. 高超声速飞行器陶瓷复合材料与热结构技术研究进展[J]. 硅酸盐学报, 2013, 41(2):251-260. LU Q, HU L F, LUO X G, et al. Development of ceramic composite and hot structures for hypersonic vehicles[J]. Journal of the Chinese Ceramic Society, 2013, 41(2):251-260(in Chinese). [73] STEWART D A, LEISER D B. Lightweight TUFROC TPS for Hypersonic Vehicles:AIAA-2006-7945[R]. Reston:AIAA, 2006. [74] JAY F, DAVID S, DANIEL L, et al. TUFROC thermal protection system:NASA-ARC-E-DAA-TN71391[R]. Washington D.C.:NASA, 2019. [75] HUDSON L D, STEPHENE C A. The X-37 hot structure control surface testing:NASA/TM-2006-213677[R]. Washington D.C.:NASA, 2006. [76] VALENTINE P G. Hot structure control surface progress for X-37 technology development program:20040086536[R]. Washington D.C.:NASA, 2004. [77] PROSUNTSOV P V, SHULYAKOVSKⅡ A V. Numerical simulation of a thermal-protection element of a promising reusable capsule-type lander[J]. Journal of Engineering Physics and Thermophysics, 2017, 90(1):110-116. [78] BESSIRE B K, LAHANKAR S A, MINTON T K. Pyrolysis of phenolic impregnated carbon ablator (PICA)[J]. ACS Applied Materials & Interfaces, 2015, 7(3):1383-1395. [79] SEEDHOUSE E. Dragon design, development, and test[M]. 2016:23-44. [80] HOWARD R D. Dream chaser commercial crewed spacecraft overview:AIAA-2011-2245[R]. Reston:AIAA, 2011. [81] STONE H W, PILAND W M. 21 st century space transportation system design approach-HL-20 personnel launch system[J]. Journal of Spacecraft and Rockets, 1993, 30(5):521-528. [82] CHAUMETTE D, CRETENET J C. Hermes thermal protection system overview[J]. Acta Astronautica, 1987, 16:391-399. [83] WUILBERCQ R, AHMAD A, SCANLON T, et al. Towards robust aero-thermodynamic predictions for re-usable single-stage to orbit vehicles:AIAA-2012-5803[R]. Reston:AIAA, 2012. [84] EGGERS T. Numerical investigation on the potential of steam cooling for the Skylon spaceplane in hypersonic flow[C]//28th International Congress of the Aeronautical Sciences. Braunschweig:DLR, 2012:1-10. [85] VARVILL R, BOND A. Application of carbon fibre truss technology to the fuselage structure of the Skylon spaceplane[J]. Journal of the British Interplanetary Society, 2004, 57:173-185. [86] ITO T, AKIMOTO T. HOPE-Japan's first step for spaceplane[C]//Proceedings of the First International Conference on Hypersonic Flight in the 21 st Century, 1988:134-142. [87] OGASAWARA T, ISHIKAWA T. Application of Tyranno, M Fiber/Si-Ti-C-O matrix composite to the thermal protection system of the Japanese Hope-X space vehicle[M]. New York:John Wiley & Sons, 2008:23-30. [88] SHOICHIRO A, SHO M, JIRO K, et al. Lessons learned from HOPE system designing:AIAA-2001-1881[R]. Reston:AIAA, 2001. [89] 李锋. 疏导式热防护[M]. 北京:中国宇航出版社, 2017:1-10. LI F. Dredging thermal protection structures[M]. Beijing:China Aerospace Press, 2017:1-10(in Chinese). [90] GLASS D E. Heat-pipe-cooled leading edges for hypersonic vehicles:20080014285[R]. Washington D.C.:NASA, 2006. [91] SHUKLA K N. Heat pipe for aerospace applications-an overview[J]. Journal of Electronics Cooling and Thermal Control, 2015, 5:1-14. [92] 李金旺, 戴书刚. 高温热管技术研究进展与展望[J]. 中国空间科学技术, 2019, 39(3):30-42. LI J W, DAI S G. Recent progress and prospect of high-temperature heat pipe technology[J]. Chinese Space Science and Technology, 2019, 39(3):30-42(in Chinese). [93] SILVERSTEIN C C. A feasibility study of heat pipe cooled leading edges for hypersonic cruise aircraft:NASA/CR-1971-1857[R]. Washington D.C.:NASA, 1971. [94] NIBLOCK G A, REEDER J C. Four space shuttle wing leading edge concepts[J]. Journal of Spacecraft and Rockets, 1974, 11(5):314-320. [95] CAMARDA C J, Glass D E. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles:19930003272[R]. Washington D.C.:NASA,1993. [96] SRIMUANG W, AMATACHAYA P. A review of the applications of heat pipe heat exchangers for heat recovery[J]. Renewable & Sustainable Energy Reviews, 2012, 16(6):4303-4315. [97] CAMARDA C J, MASEK R V. Design, analysis, and tests of a shuttle-type heat-pipe-cooled leading edge:AIAA-1981-4020[R]. Reston:AIAA, 1981. [98] BOMAN B L, ELIAS T I. Tests on a sodium/Hastelloy X wing leading edge heat pipe for hypersonic vehicles. AIAA-1990-38451[R]. Reston:AIAA, 1990. [99] BOMAN B L, CITRIN K M, GARNER E C. Heat pipes for wing leading edges of hypersonic vehicles. NASA/CR-1990-1881922[R]. Washington D.C.:NASA, 1990. [100] CAMARDA C J, RANSONE P O. Reusable high-temperature heat pipes and heat pipe panels:United States. US4868346[P]. 1989-06-13. [101] GLASS D E, CAMARDA C J, MERRIGAN M A, et al. Fabrication and testing of Mo-Re heat pipes embedded in carbon/carbon[J]. Journal of Spacecraft and Rockets, 1999, 36(1):79-86. [102] BAI T, ZHANG H, XU H. Application of high temperature heat pipe in hypersonic vehicles thermal protection[J]. Journal of Central South University of Technology, 2011, 18:1278-1284. [103] 艾邦成, 陈思员, 韩海涛, 等. 复杂构型前缘疏导热防护技术[J]. 气体物理, 2019, 4(1):1-7. AI B C, CHEN S Y, HAN H T, et al. Complex dredging thermal protection structure for leading edge[J]. Physics of Gases, 2019, 4(1):1-7(in Chinese). [104] 朱晓军, 李锋, 欧东斌, 等. 疏导式热防护在翼前缘中的应用探索[J]. 力学与实践, 2019, 41(4):388-392. ZHU X J, LI F, OU D B, et al. Heat-pipe-cooled thermal protection for the leading edge of the wing[J]. Mechanics in Engineering, 2019, 41(4):388-392(in Chinese). [105] 孙健, 刘伟强. 尖化前缘高导热材料防热分析[J]. 航空学报, 2011, 32(9):1622-1628. SUN J, LIU W Q. Analysis of sharp leading-edge thermal protection of high thermal conductivity materials[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1622-1628(in Chinese). [106] STEEVES C A, HE M Y, KASEN S D. Feasibility of metallic structural heat pipes as sharp leading edges for hypersonic vehicles[J]. Journal of Applied Mechanics, 2009, 76:031014-1-031019-9. [107] GLASS D E, MERRIGAN M A, SENA J T. Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon:NASA/CR-1998-207642[R]. Washington D.C.:NASA, 1998. [108] GLASS D E, MERRIGAN M A, SENA, J T, et al. Fabrication and testing of a leading-edge-shaped heat pipe:NASA/CR-1998-208720[R]. Washington D.C.:NASA, 1998. [109] AI B C, CHEN S Y, YU J J, et al. Abrication of lithium/C-103 alloy heat pipes for sharp leading edge cooling[J]. Heat and Mass Transfer, 2018, 54(5):1359-1366. [110] 孙健, 刘伟强. 高超声速飞行器热管冷却前缘结构一体化建模分析[J]. 物理学报, 2013, 62(7):074401. SUN J, LIU W Q. Investigation on integral model of heat-pipe-cooled leading edge of hypersonic vehicle[J]. Acta Physica Sinica, 2013, 62(7):074401(in Chinese). [111] LIU H, LIU W. A numerical model for the platelet heat-pipe-cooled leading edge of hypersonic vehicle[J]. Acta Astronautica, 2016, 118:210-217. [112] DICKINSON T J, BOWMAN W J, STOYANOF M. Performance of liquid metal heat pipes during a space shuttle flight[J]. Journal of Thermophysics and Heat Transfer, 1998, 12(2):263-269. [113] 韩海涛, 邓代英, 陈思员, 等. 尖前缘一体化高温热管结构设计与分析机械强度, 2013, 35(1):48-52. HAN H T, DENG D Y, CHEN S Y, et al. Design and structural analysis of sharp leading edge integrated with heat pipe[J]. Journal of Mechanical Strength, 2013, 35(1):48-52(in Chinese). [114] 曲伟, 王焕光. 高温及超高温热管的相容性和传热性能[J]. 化工学报, 2011, 62(S1):77-81. QU W, WANG H H. Compatibility and heat transfer of high and super high temperature heat pipes[J]. CIESC Journal, 2011, 62(S1):77-81(in Chinese). [115] 金烜, 沈赤兵, 吴先宇, 等. 超燃冲压发动机再生冷却技术研究进展[J]. 火箭推进, 2016, 42(5):66-73. JIN X, SHEN C B, WU X Y, et al. Progress of regenerative cooling technology for scramjet[J]. Journal of Rocket Propulsion, 2016, 42(5):66-73(in Chinese). [116] BUNKER R S. A review of shaped hole turbine film-cooling technology[J]. Journal of Heat Transfer, 2005, 127(4):441-453. [117] HUANG Z, XIONG Y B, LIU Y Q, et al. Experimental investigation of full-coverage effusion cooling through perforated flat plates[J]. Applied Thermal Engineering, 2015, 76:76-85. [118] BAO W, QIN R, ZHOU R X, et al. Effect of cooling channel geometry on re-cooled cycle performance for hydrogen fueled scramjet[J]. International Journal of Hydrogen Energy, 2010, 35(13):7002-7011. [119] SOBEL D L, SPADACCINI L J. Hydrocarbon fuel cooling technologies for advanced propulsion[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119(2):344-351. [120] KELLY H N, BLOSSER M L. Active cooling from the sixties to NASP:NASA-19930003270[R]. Washington D.C.:NASA, 1993. [121] PAQUETTE E, WARBURTON R, ECKEL A, et al. Cooled CMC scramjet combustor structure development:AIAA-2002-4132[R]. Reston:AIAA, 2002. [122] PAQUETTE E. Cooled CMC Structures for scramjet engine flowpath components:AIAA-2005-3432[R]. Reston:AIAA, 2005. [123] JASKOWIAK E H, DICKENS K W. Cooled ceramic matrix composite propulsion structures demonstrated:NASA-2005-213419[R]. Washington D.C.:NASA, 2005. [124] BOUQUET C, LACOMBE A, HAUBER B, et al. Ceramic matrix composites cooled panel development for advanced propulsion systems:AIAA-2004-1998[R]. Reston:AIAA, 2004. [125] LARRIEU J M, UHRIG G, THEBAULT J, et al. Active cooling panel of thermostructural composite material and method for its manufacture:United States. US20040194941A1[P]. 2004-10-07. [126] LARRIEU J M, UHRIG G, THEBAULT J, et al. Method of manufacturing an active cooling panel out of thermostructural composite material:United States. US20050077341A1[P]. 2005-04-14. [127] BOUQUET C, HAUBER B, THEBAULT J. Validation of a leak-free C/SiC heat exchanger technology:AIAA-2003-6918[R]. Reston:AIAA, 2003. [128] 刘双, 张博明. 发汗式热防护系统主动冷却效率研究[J]. 宇航学报, 2011, 32(2):433-438. LIU S, ZHANG B M. Investigation on Transpiration active cooling metallic thermal protection systems[J]. Journal of Astronautics, 2011, 32(2):433-438(in Chinese). [129] KRENKEL W. Microstructure tailoring of C/C-SiC composites[J]. Ceramic Engineering and Science Proceedings, 2003, 24(4):471-476. [130] 陈朝辉, 王松. 先进推进系统用主动冷却陶瓷基复合材料结构研究进展[J]. 材料工程, 2012(11):92-96. CHEN C H, WANG S, Progress of actively cooled ceramic matrix composites applied in advanced propulsion systems[J]. Journal of Materials Engineering, 2012(11):92-96(in Chinese). [131] SALMON T, CAHUZAC G, BOUCHEZ M, et al. Method for making a double-walled thermostructural composite monolithic component and resulting component:United States. US27503149B2[P]. 2009-03-17. [132] BOUCHEZ M, CAHUZAC G, BEYER S. PTAH-SOCAR fuel-cooled composite materials structure in 2003:AIAA-2009-7353[R]. Reston:AIAA, 2009. [133] SIPPEL M, TRIVAILO O, BUSSLER L, et al. Evolution of the SpaceLiner towards a Reusable TSTO-Launcher[C]//67th International Astronautical Congress, 2016:1-22. [134] SIPPEL M, VALLUCHI C, BUSSLER L, et al. SpaceLiner concept as catalyst for advanced hypersonic vehicles research[C]//7th European Conference for Aeronautics and Space Sciences, 2017:1-12. [135] SCHWANEKAMP T, MEYER F, REIMER T, et al. System studies on active thermal protection of a hypersonic suborbital passenger transport vehicle:AIAA-2014-2372[R]. Reston:AIAA, 2014. [136] SIPPEL M, SCHWANEKAMP T, TRIVAILO O, et al. Progress of SpaceLiner rocket-powered high-speed concept[C]//64th International Astronautical Congress, 2013:1-14. [137] GULHAN A, BRAUN S. An experimental study on the efficiency of transpiration cooling in laminar and turbulent hypersonic flows[J]. Experiments in Fluids, 2011, 50(3):509-525. [138] 叶红, 王志瑾. 高超声速飞行器热防护结构参数优化及对比分析[J]. 航天器环境工程, 2013(5):69-74. YE H, WANG Z J. The optimization and comparison of thermal protection structures for hypersonic aircraft[J]. Spacecraft Environment Engineering, 2013(5):69-74(in Chinese). [139] 解维华, 张博明, 杜善义. 金属热防护系统设计的有限元分析[J]. 航空学报, 2006, 27(5):166-171. XIE W H, ZHANG B M, DU S Y. Finite element analysis of metallic thermal protection systems design[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):166-171(in Chinese). [140] 韩杰才, 梁军, 王超, 等. 高超声速飞行器两类典型防热材料的性能表征与评价[J]. 力学进展, 2009, 39(6):695-715. HAN J C, LIANG J, WANG C, et al. Material characterization and behavior evaluation of two typical thermal protection materials for hypersonic aircrafts[J]. Advances in Mechanics, 2009, 39(6):695-715(in Chinese). [141] DARYABEIGI K. Heat transfer in high-temperature fibrous insulation[J]. Journal of Thermophysics & Heat Transfer, 2002, 17(1):10-20. [142] SPINNLER M, WINTER E R F, VISKANTA R. Studies on high-temperature multilayer thermal insulations[J]. International Journal of Heat and Mass Transfer, 2004, 47(6):1305-1312. [143] KANT T, BABU C S. Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models[J]. Composite Structures, 2000, 49(1):77-85. [144] REDDY J N, CHIN C D. Thermomechanical analysis of functionally graded cylinders and plates[J]. Journal of Thermal Stresses, 1998, 21(6):593-626. [145] LIAKAT M, NADERI M, KHONSARI M M, et al. Nondestructive testing and prediction of remaining fatigue life of metals[J]. Journal of Nondestructive Evaluation, 2014, 33(3):309-316. [146] MEO M, VIGNJEVIC R, MARENGO G. The response of honeycomb sandwich panels under low-velocity impact loading[J]. International Journal of Mechanical Sciences, 2005, 47(9):1301-1325. [147] FOO C C, CHAI G B, SEAH L K. A model to predict low-velocity impact response and damage in sandwich composites[J]. Composites Science and Technology, 2008, 68(6):1348-1356. [148] HUANG C, ZHANG Y, VILAR R. Microstructure and anti-oxidation behavior of laser clad Ni-20Cr coating on molybdenum surface[J]. Surface & Coatings Technology, 2010, 205(3):835-840. [149] ZHANG D D, REN J J, LI L J, et al. Terahertz non-destructive testing technology for glass fiber honeycomb composites[J]. Acta Photonica Sinica, 2019, 48(2):0212002. [150] GLASS D E, DIRLING R, CROOP H, et al. Materials development for hypersonic flight vehicles:AIAA-2006-8122[R]. Reston:AIAA, 2006. [151] STEYER T E. Shaping the future of ceramics for aerospace applications[J]. International Journal of Applied Ceramic Technology, 2013, 10(3):389-394. [152] TIMOTHY A B, JOSEPH M, BRIAN A M. Review of gaps, obstacles, and technological challenges in hypersonic applications[J]. International Journal of Energetic Materials and Chemical Propulsion, 2018, 17(1):13-55. [153] SING S L, YEONG W Y, WIRIA F E, et al. Direct selective laser sintering and melting of ceramics:a review[J]. Rapid Prototyping Journal, 2017, 23(3):1355-2546. [154] 张宗波, 郎冠卿, 姜海富, 等. 低地球轨道航天器涂层防护技术研究进展[J]. 航天器环境工程, 2016, 33(1):113-118. ZHANG Z B, LANG G Q, JIANG H F, et al. Review of protection coating techniques for LEO spacecrafts[J]. Spacecraft Environment Engineering, 2016, 33(1):113-118(in Chinese). [155] 关蕴奇, 姜勇刚, 冯军宗, 等. 无机纤维增强SiO2气凝胶隔热复合材料的研究进展[J]. 材料导报, 2017, 31(29):438-443. GUAN Y Q, JIANG Y G, FENG J Z, et al. Progress of silica aerogel insulation composites[J]. Materials Reports, 2017, 31(29):438-443(in Chinese). [156] 杨强, 解维华, 彭祖军, 等. 热防护设计分析技术发展中的新概念与新趋势[J]. 航空学报, 2015,36(9):183-193. YANG Q, XIE W H, PENG Z J, et al. New concepts and trends in development of thermal protection design and analysis technology[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):183-193(in Chinese). |
[1] | ZHAO Chenwei, MAO Junkui, TU Zecan, QIU Penglin. Thermal analysis methods for high-temperature ceramic matrix composite components: Review and prospect [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 24126-024126. |
[2] | DAI Jixiang, SHA Jianjun, WANG Shouhao, WANG Yongchang. Influence of fiber surface state on microstructure and phase composition of C/C-SiC composites [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(5): 1704-1712. |
[3] | Zhou Shizhen;Wang Tsunkuei. AN EQUIVALENT INCLUSION MODEL ANALYSIS OF BRIDGED PROBLEM IN FIBER REINFORCED CERAMIC COMPOSITES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1991, 12(7): 416-419. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2331
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2429
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341