[1] |
欧阳小穗, 刘毅. 高速流场中变刚度复合材料层合板颤振分析[J]. 航空学报, 2018, 39(3):221539. OUYANG X S, LIU Y. Panel flutter of variable stiffness composite laminates in supersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):221539(in Chinese).
|
[2] |
卓航, 李是卓, 韩恩林, 等. 高强高模聚酰亚胺纤维增强环氧树脂复合材料力学性能与破坏机制[J]. 复合材料学报, 2019, 36(9):2101-2109. ZHUO H, LI S Z, HAN E L, et al. Mechanical properties and failure mechanism of high strength and high modulus polyimide fiber reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2019, 36(9):2101-2109(in Chinese).
|
[3] |
沈裕峰, 李勇, 王鑫, 等. 湿热环境下K-cor夹层复合材料的力学性能[J]. 航空学报, 2016, 37(7):2303-2311. SHEN Y F, LI Y, WANG X, et al. Mechanical properties of K-cor sandwich composite under hygrothermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2303-2311(in Chinese).
|
[4] |
李汪颖, 杨雄伟, 李跃明. 多孔材料夹层结构声辐射特性的两尺度拓扑优化设计[J]. 航空学报, 2016, 37(4):1196-1206. LI W Y, YANG X W, LI Y M. Two-scale topology optimization design of sandwich structures of a porous core with respect to sound radiation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1196-1206(in Chinese).
|
[5] |
LIU Y, ZHANG Y C, LIU S T, et al. Effect of unbonded areas around hole on the fatigue crack growth life of diffusion bonded titanium alloy laminates[J]. Engineering Fracture Mechanics, 2016, 163:176-188.
|
[6] |
顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese).
|
[7] |
PHIL E, SOUTIS C. Polymer composites in the aerospace industry[M]. Armstand:Elsevier, 2014.
|
[8] |
BOLOTIN V V. Delaminations in composite structures:Its origin, buckling, growth and stability[J]. Composites Part B:Engineering, 1996, 27(2):129-145.
|
[9] |
赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1):171-199. ZHAO L B, GONG Y, ZHANG J Y. A survey on the delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):171-199(in Chinese).
|
[10] |
孙长玺. 基于形状等效和刚度折减的复合材料分层损伤分析方法[D]. 大连:大连理工大学, 2016:1-2. SUN C X. Analysis method for composite delamination based on shape simplification and stiffness degradation[D]. Dalian:Dalian University of Technology, 2016:1-2(in Chinese).
|
[11] |
REISSNER E. The effect of transverse shear deformation on the bending of elastic plates[J]. Journal of Applied Mechanics, 1945, 12:69-77.
|
[12] |
REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4):745-752.
|
[13] |
REDDY J N. An evaluation of equivalent-single-layer and layerwise theories of composite laminates[J]. Composite structures, 1993, 25(1-4):21-35.
|
[14] |
XING Y F, WU Y, LIU B, et al. Static and dynamic analyses of laminated plates using a layerwise theory and a radial basis function finite element method[J]. Composite Structures, 2017, 170:158-168.
|
[15] |
MURAKAMI H. Laminated composite plate theory with improved in-plane responses[J]. Journal of Applied Mechanics, 1986, 53(3):661-666.
|
[16] |
DI SCIUVA M. Multilayered anisotropic plate models with continuous interlaminar stresses[J]. Composite Structures, 1992, 22(3):149-167.
|
[17] |
CHO M, PARMERTER R. Efficient higher order composite plate theory for general lamination configurations[J]. AIAA Journal, 1993, 31(7):1299-1306.
|
[18] |
TESSLER A, DI SCIUVA M, GHERLONE M. A refined zigzag beam theory for composite and sandwich beams[J]. Journal of Composite Materials, 2009, 43:1051-1081.
|
[19] |
REDDY J N. Mechanics of laminated composite plates and shells:Theory and analysis[M]. 2nd ed. Boca Raton:CRC press, 2004.
|
[20] |
CARRERA E. Cz0 requirements-models for the two dimensional analysis of multilayered structures[J]. Composite Structures, 1997, 37(3-4):373-383.
|
[21] |
LEKHNITSKII S G. Strength calculation of composite beams[J]. Vestnik inzhen itekhnikov 1935. No. 9.
|
[22] |
DI SCIUVA M. Bending, vibration and buckling of simply supported thick multilayered orthotropic plates:An evaluation of a new displacement model[J]. Journal of Sound and Vibration, 1986, 105(3):425-442.
|
[23] |
CHO M, OH J. Higher order zig-zag plate theory under thermo-electric-mechanical loads combined[J]. Composites Part B:Engineering, 2003, 34(1):67-82.
|
[24] |
TESSLER A. Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner's mixed variational principle[J]. Meccanica, 2015, 50(10):2621-2648.
|
[25] |
IURLARO L, GHERLONE M, DI SCIUVA M, et al. Refined Zigzag Theory for laminated composite and sandwich plates derived from Reissner's Mixed Variational Theorem[J]. Composite Structures, 2015, 133:809-817.
|
[26] |
贺丹, 杨万里. 基于广义变分原理和锯齿理论的高精度层合梁模型[J]. 宇航总体技术, 2017, 1(2):26-32. HE D, YANG W L. A high-accuracy composite laminated beam model based on generalized variational principle and zigzag theory[J]. Astronautical Systems Engineering Technology, 2017, 1(2):26-32(in Chinese).
|
[27] |
郭绍伟, 张永存, 宋恩鹏, 等. 开孔碳纤维层合板层间应力分析[J]. 复合材料学报, 2011, 28(5):228-233. GUO S W, ZHANG Y C, SONG E P, et al. Interlaminar stress analysis of carbon fiber reinforced laminated plate with a hole[J]. Acta Materiae Compositae Sinica, 2011, 28(5):228-233(in Chinese).
|
[28] |
刘颖卓, 张永存, 刘书田, 等. 考虑复合材料蒙皮稳定性的飞机翼面结构布局优化设计[J]. 航空学报, 2010, 31(10):1985-1992. LIU Y Z, ZHANG Y C, LIU S T, et al. Layout optimization design of wing structures with consideration of stability of composite skin[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10):1985-1992(in Chinese).
|
[29] |
CARRERA E. On the use of the Murakami's zig-zag function in the modeling of layered plates and shells[J]. Computers & Structures, 2004, 82(7-8):541-554.
|
[30] |
WU Z, CHEN W J. A global higher-order zig-zag model in terms of the HW variational theorem for multilayered composite beams[J]. Composite Structures, 2016, 158:128-136.
|
[31] |
REN X H, CHEN W J, WU Z. A new zig-zag theory and C0 plate bending element for composite and sandwich plates[J]. Archive of Applied Mechanics, 2011, 81(2):185-197.
|
[32] |
REN X H, CHEN W J, WU Z. A C0-type zig-zag theory and finite element for laminated composite and sandwich plates with general configurations[J]. Archive of Applied Mechanics, 2012, 82(3):391-406.
|
[33] |
WU Z, SH L O, REN X H. A C0 zig-zag model for the analysis of angle-ply composite thick plates[J]. Composite Structures, 2015, 127:211-223.
|
[34] |
HAN J W, KIM J S, CHO M. Generalization of the C0-type zig-zag theory for accurate thermomechanical analysis of laminated composites[J]. Composites Part B:Engineering, 2017, 122:173-191.
|
[35] |
PANDEY S, PRADYUMMA S. A new C0 higher-order layerwise finite element formulation for the analysis of laminated and sandwich plates[J]. Composite Structures, 2015, 131:1-16.
|
[36] |
DI SCIUVA M, GHERLONE M, IURLARO L, et al. A class of higher-order C0 composite and sandwich beam elements based on the refined zigzag theory[J]. Composite Structures, 2015, 132:784-803.
|