[1] SUN C X, XU J S, CHEN X, et al. Strain rate and temperature dependence of the compressive behavior of composite modified double-base propellant[J]. Mechanics of Materials, 2015, 89:35-46.
[2] XU J S, CHEN X, WANG H L, et al. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J]. International Journal of Solid and Structures, 2014, 51(18):3209-3217.
[3] DENG K, YANG J H, HUANG W W, et al. A new method to obtain shear modulus of solid propellant[J]. Acta Astronautica, 2011, 69(7-8):440-444.
[4] 龚建良, 刘佩进, 李强. 基于能量守恒的HTPB推进剂非线性本构关系[J]. 含能材料, 2013, 21(3):325-329. GONG J L, LIU P J, LI Q. Nonlinear constitutive relation of HTPB propellant based on the first law of thermodynamics[J]. Chinese Journal of Energetic Materials, 2013, 21(3):325-329 (in Chinese).
[5] 孟红磊. 改性双基推进剂药柱结构完整性数值仿真方法研究[D]. 南京:南京理工大学, 2011:50-57. MENG H L. Research on numerical simulation method of structure integrity analysis for modified double base propellant grain[D]. Nanjing:Nanjing University of Science and Technology, 2011:50-57 (in Chinese).
[6] 常新龙, 赖建伟, 张晓军, 等. HTPB推进剂高应变率粘弹性本构模型研究[J]. 推进技术, 2014, 35(1):123-127. CHANG X L, LAI J W, ZHANG X J, et al. High strain-rate viscoelastic constitutive model for HTPB propellant[J]. Journal of Propulsion Technology, 2014, 35(1):123-127 (in Chinese).
[7] 邓凯, 阳建红, 陈飞, 等. HTPB复合固体推进剂本构方程[J]. 宇航学报, 2010, 31(7):1815-1818. DENG K, YANG J H, CHEN F, et al. On constitutive equation of HTPB composite solid propellant[J]. Journal of Astronautics, 2010, 31(7):1815-1818 (in Chinese).
[8] 张建彬. 双基推进剂屈服准则及粘弹塑性本构模型研究[D]. 南京:南京理工大学, 2013:88-98. ZHANG J B. Study on yield criteria and visco-elastoplastic constitutive model of the double-base propellant[D]. Nanjing:Nanjing University of Science and Technology, 2013:88-98 (in Chinese).
[9] DARABI M K, AL-RUB R K A, MASAD E A, et al. Thermodynamic-based model for coupling temperature-dependent viscoelastic, viscoplastic, and viscodamage of constitutive behavior of asphalt mixtures[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(7):817-854.
[10] DARABI M K, AL-RUB R K A, MASAD E A, et al. A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphalt materials[J]. International Journal of Solid and Structures, 2011, 48(1):191-207.
[11] KIM J S, MULIANA A H. A combined viscoelastic-viscoplastic behavior of particle reinforced composites[J]. International Journal of Solid and Structures, 2010, 47(5):580-594.
[12] 朱耀庭, 孙璐, 朱浩然, 等. 基于热力学理论的粘弹-粘塑性本构模型[J]. 力学季刊, 2010, 31(4):449-459. ZHU Y T, SUN L, ZHU H R, et al. A constitutive model of viscoelastic-viscoplastic solids based on thermo-dynamics theory[J]. Chinese Quarterly of Mechanics, 2010, 31(4):449-459 (in Chinese).
[13] 朱浩然, 孙璐, 朱耀庭. 基于热力学的沥青混合料粘弹-粘塑性损伤本构模型[J]. 中国公路学报, 2013, 26(3):57-64. ZHU H R, SUN L, ZHU Y T. Viscoelastic-viscoplastic damage constitutive model based on thermodynamics for asphalt mixtures[J]. Chinese Journal of Highway and Transport, 2013, 26(3):57-64 (in Chinese).
[14] LEMAITRE J, CHABOCHE J L. Mechanics of solid materials[M]. London:Cambridge University Press, 1990:198-204.
[15] AL-RUB R K A, VOYIADJIS G Z. Gradient-enhanced coupled plasticity-anisotropic damage model for concrete fracture:Computational aspects and applications[J]. International Journal of Damage Mechanics, 2009, 18(2):115-154.
[16] DESSOUKY S H. Multiscale approach for modeling hot mix asphalt[D]. College Station, TX:Texas A&M University, 2005:90-92.
[17] DARABI M K, AL-RUB R K A, MASAD E A, et al. A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures[J]. International Journal of Plasticity, 2012, 35(8):100-134.
[18] SUN L, ZHU Y T. A serial two-stage viscoelastic-viscoplastic constitutive model with thermodynamical consistency for characterizing time-dependent deformation behavior of asphalt concrete mixtures[J]. Construction and Building Materials, 2013, 40(7):584-595.
[19] MASAD E, DESSOUKY S, LITTLE D. Development of an elastoviscoplastic microstructural-based continuum model to predict permanent deformation in hot mix asphalt[J]. International Journal of Geomechanics, 2007, 7(2):119-130.
[20] AL-RUB R K A, MASAD E A, HUANG C W. Improving the sustainability of asphalt pavements through developing a predictive model with fundamental material properties:SWUTC/09/476660-00007-1[R]. Springfield, VA:National Technical Information Service, 2009. |