[1] LAWDEN D F. Optimal trajectories for space navigation[M]. London:Butterworths, 1963:54-69.
[2] HANDELSMAN M, LION P M. Primer vector on fixed-time impulsive trajectories[J]. AIAA Journal, 1967, 6(1):127-132.
[3] JEZEWSKI D J, ROZENDAAL H L. An efficient method for calculating optimal free-space n-impulse trajectories[J]. AIAA Journal, 1968, 6(11):2160-2165.
[4] HULL D G. Conversion of optimal control problems into parameter optimization problems[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1):57-60.
[5] HARGRAVES C R, PARIS S W. Direct trajectory optimization using nonlinear programming and collocation[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(4):338-342.
[6] FAHROO F, ROSS I M. Direct trajectory optimization by a Chebyshev pseudospectral method[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1):160-166.
[7] GAO Y, KLUEVER C A. Low-thrust interplanetary orbit transfers using hybrid trajectory optimization method with multiple shooting[C]//Proceedings of AIAA/AAS Astrodynamics Specialist Conference. Reston:AIAA, 2004:726-747.
[8] KLUEVER C A, PIERSON B L. Optimal earth-moon trajectories using nuclear electric propulsion[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(2):239-245.
[9] BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2):193-207.
[10] 高扬. 电火箭星际航行:技术进展、轨道设计与综合优化[J]. 力学学报, 2011, 43(6):991-1019. GAO Y. Interplanetary travel with electric propulsion:Technological progress, trajectory design, and comprehensive optimization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):991-1019(in Chinese).
[11] 李俊峰, 蒋方华. 连续小推力航天器的深空探测轨道优化方法综述[J]. 力学与实践, 2011, 33(3):1-6. LI J F, JIANG F H. Survey of low-thrust trajectory optimization methods for deep space exploration[J]. Mechanics in Engineering, 2011, 33(3):1-6(in Chinese).
[12] CONWAY B A. A survey of methods available for the numerical optimization of continuous dynamic systems[J]. Journal of Optimization Theory and Applications, 2012, 152(2):271-306.
[13] DIXON L C W, BARTHOLOMEW-BIGGS M C. Adjoint-control transformations for solving practical optimal control problems[J]. Optimal Control Applications and Methods, 1981, 2:365-381.
[14] KLUEVER C A. Optimal earth-moon trajectories using combined chemical-electric propulsion[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(2):253-258.
[15] RUSSEL R P. Primer vector theory applied to global low-thrust trade studies[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):460-472.
[16] 何胜茂. 多段拼接小推力转移轨道优化设计方法[D]. 北京:中国科学院大学, 2012:26-31. HE S M. Design and optimization of low-thrust transfer trajectories with multiple patched orbital segments[D]. Beijing:University of Chinese Academy of Science, 2012:26-31(in Chinese).
[17] FAHROO F, ROSS I M. Costate estimation by a legendre pseudospectral method[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2):270-277.
[18] GUO T, JIANG F, LI J. Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization[J]. Acta Astronautica, 2012, 71(71):38-50.
[19] SEYWALD H, KUMAR R R. Finite difference scheme for automatic costate calculation[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(1):231-239.
[20] PINES S. Constants of the motion for optimum thrust trajectories in a central force field[J]. AIAA Journal, 1964, 2(11):2010-2014.
[21] RANIERI C L, OCAMPO C A. Indirect optimization of spiral trajectories[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6):1360-1366.
[22] LEE D, BANG H. Efficient initial costates estimation for optimal spiral orbit transfer trajectories design[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6):1943-1947.
[23] THORNE J D, HALL C D. Approximate initial lagrange costates for continuous-thrust spacecraft[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(2):283-288.
[24] YAN H, WU H. Initial adjoint-variable guess technique and its application in optimal orbital transfer[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(3):490-492.
[25] MINTER C, FULLER-ROWELL T. A robust algorithm for solving unconstrained two-point boundary value problems (AAS 05-129)[J]. Advances in the Astronautical Sciences, 2005, 120(1):409-444.
[26] 刘滔, 何兆伟, 赵育善. 持续推力时间最优轨道机动问题的改进鲁棒算法[J]. 宇航学报, 2008, 29(4):1216-1221. LIU T, HE Z W, ZHAO Y S. Continuous-thrust orbit maneuver optimization using modified robust algorithm[J]. Journal of Astronautics, 2008, 29(4):1216-1221(in Chinese).
[27] SHEN H X, CASALINO L, LI H Y. Adjoints estimation methods for impulsive moon-to-earth trajectories in the restricted three-body problem[J]. Optimal Control Applications and Methods, 2014, 36(4):463-474.
[28] SHEN H X, CASALINO L, LUO Y Z. Global search capabilities of indirect methods for impulsive transfers[J]. The Journal of the Astronautical Sciences, 2015, 62(3):212-232.
[29] HABERKORN T, MARTINON P, GERGAUD J. Low thrust minimum-fuel orbital transfer:An homotopic approach[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6):1046-1060.
[30] FOWLER W T, O'NEILL P M. Relationship between coast arc length and switching function value during optimization[J]. Journal of Spacecraft and Rockets, 1976, 13(7):445-446.
[31] ENRIGHT P J, CONWAY B A. Discrete approximations to optimal trajectories using direct transcription and nonlinear programming[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(4):994-1002.
[32] GAO Y. Near-optimal very low-thrust earth-orbit transfers and guidance schemes[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):529-539.
[33] ZUIANI F, VASILE M. Extended analytical formulas for the perturbed keplerian motion under a constant control acceleration[J]. Celestial Mechanics and Dynamical Astronomy, 2015, 121(3):275-300.
[34] BERTRAND R, EPENOY R. New smoothing techniques for solving bang-bang optimal control problems-Numerical results and statistical interpretation[J]. Optimal Control Applications and Methods, 2002, 23(4):171-197.
[35] GERGAUD J, HABERKORN T. Homotopy method for minimum consumption orbit transfer problem[J]. ESAIM:Control, Optimisation and Calculus of Variations, 2006, 12(2):294-310.
[36] JIANG F, BAOYIN H, LI J. Practical techniques for low-thrust trajectory optimization with homotopic approach[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1):245-258.
[37] ZHANG C, TOPPUTO F, BERNELLI-ZAZZERA F, et al. Low-thrust minimum-fuel optimization in the circular restricted three-body problem[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(8):1501-1510.
[38] PETUKHOV V. Optimization of interplanetary trajectories for spacecraft with ideally regulated engines using the continuation method[J]. Cosmic Research, 2008, 46(3):219-232.
[39] PETUKHOV V. Method of continuation for optimization of interplanetary low-thrust trajectories[J]. Cosmic Research, 2012, 50(3):249-261.
[40] LI J, XI X N. Fuel-optimal low-thrust reconfiguration of formation-flying satellites via homotopic approach[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(6):1709-1717.
[41] MITANI S, YAMAKAWA H. Continuous-thrust transfer with control magnitude and direction constraints using smoothing techniques[J]. Journal of Guidance, Control, and Dynamics, 2012, 36(1):163-174.
[42] CHUANG C H, TROY G, JOHN H. Fuel-optimal, low- and medium-thrust orbit transfers in large numbers of burns:AIAA-1994-3650[R]. Reston:AIAA, 1994.
[43] 朱小龙, 刘迎春, 高扬. 航天器最优受控绕飞轨迹推力幅值延拓设计方法[J]. 力学学报, 2014, 46(5):756-769. ZHU X L, LIU Y C, GAO Y. Thrust-amplitude continuation design approach for solving spacecraft optimal controlled fly-around trajectory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5):756-769(in Chinese).
[44] GLANDORF D R. Lagrange multipliers and the state transition matrix for coasting arcs[J]. AIAA Journal, 1969, 7(2):363-365.
[45] FERNANDES S D S. Universal closed-form of lagrangian multipliers for coast-arcs of optimum space trajectories[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2003, 25(4):336-340.
[46] XU Y. Enhancement in optimal multiple-burn trajectory computation by switching function analysis[J]. Journal of Spacecraft and Rockets, 2006, 44(1):264-272.
[47] JAMISON B R, COVERSTONE V. Analytical study of the primer vector and orbit transfer switching function[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):235-245.
[48] WALKER M J H, IRELAND B, OWENS J. A set modified equinoctial orbit elements[J]. Celestial Mechanics, 1985, 36(4):409-419.
[49] LIU H, TONGUE B H. Indirect spacecraft trajectory optimization using modified equinoctial elements[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(2):619-623.
[50] VOLK O. Johann heinrich lambert and the determination of orbits for planets and comets[J]. Celestial Mechanics, 1980, 21(2):237-250.
[51] GAUSS C F. Theoriy of the motion of the heavenly bodies moving about the sun in conic sections:A translation of carl frdr. Gauss "theoria motus":With an appendix. By ch. H. Davis[M]. Boston:Little, Brown and Comp., 1857:161-233.
[52] BATTIN R H. An introduction to the mathematics and methods of astrodynamics[M]. Reston:AIAA, 1999:141-236.
[53] VALLADO D A. Fundamentals of astrodynamics and applications[M]. New York:Springer Science & Business Media, 2007:419-495.
[54] 佘明生. 轨道转移[M]//杨嘉墀, 范剑峰. 航天器轨道动力学与控制. 北京:中国宇航出版社, 2009:333-335. SHE M S. Orbital tranfer[M]//YANG J X, FAN J F. Spacecraft orbital dynamics and control. Beijing:China Astronautic Publishing House, 2009:333-335(in Chinese).
[55] IZZO D. Revisiting lambert's problem[J]. Celestial Mechanics and Dynamical Astronomy, 2015, 121(1):1-15. |