| [1] 曾声奎, Michael G. Pecht, 吴际. 故障预测与健康管理(PHM)技术的现状与发展[J]. 航空学报, 2005, 26(5): 626-632. Zeng Shengkui, Michael G. Pecht, Wu Ji. Status and perspectives of prognostics and health management technologies[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5): 626-632. (in Chinese)
[2] 李瑞莹, 康锐. 基于神经网络的故障率预测方法[J]. 航空学报, 2008, 29(2): 357-363. Li Ruiying, Kang Rui. Failure rate forecasting method based on neural networks[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 357-363. (in Chinese)
[3] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London: Series A, 1998, 454(1971): 903-995.
[4] Yang Z J, Yang L H, Qing C M. An oblique-extrema-based approach for empirical mode decomposition[J]. Digital Signal Processing, 2010, 20(3): 699-714.
[5] Xu Z G, Huang B X, Zhang F. Improvement of empirical mode decomposition under low sampling rate[J]. Signal Processing, 2009, 89(11): 2296-2303.
[6] Gao Q, Duan C, Fan H, et al. Rotating machine fault diagnosis using empirical mode decomposition[J]. Mechanical Systems and Signal Processing, 2008, 22(5): 1072-1081.
[7] 王军栋, 齐维贵. 基于EMD-SVM的江水浊度预测方法研究[J]. 电子学报, 2009, 37(10): 2130-2133. Wang Jundong, Qi Weigui. Prediction of river water turbidity based on EMD-SVM[J]. Acta Electronica Sinica, 2009, 37(10): 2130-2133. (in Chinese)
[8] Wu F J, Qu L S. An improved method for restraining the end effect in empirical mode decomposition and its applications to the fault diagnosis of large rotating machinery[J]. Journal of Sound and Vibration, 2008, 314(3/4/5): 586-602.
[9] Qi K Y, He Z J, Zi Y Y. Cosine window-based boundary processing method for EMD and its application in rubing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2007, 21(5): 1197-1211.
[10] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
[11] Sloin A, Burshtein D. Support vector machine training for improved hidden Markov modeling[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 172-188.
[12] Hao P Y, Chiang J H. Fuzzy regression analysis by support vector learning approach[J]. IEEE Transactions on Fuzzy Systems, 2008, 16(2): 428-441.
[13] 胡劲松, 杨世锡. EMD方法基于径向基神经网络预测的数据延拓与应用[J]. 机械强度, 2007, 29(6): 894-899. Hu Jingsong, Yang Shixi. Application of EMD method with data extension technique based on RBF neural network to time-frequency analysis[J]. Journal of Mechanical Strength, 2007, 29(6): 894-899. (in Chinese)
[14] Cheng J S, Yu D J, Yang Y. Application of support vector regression machines to the recessing of end effects of Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21(5): 2750-2760.
[15] 黄飞. 时间序列分析法预测某型飞机的故障率[J]. 燃气涡轮试验与研究, 2001, 14(1): 30-32. Huang Fei. Failure prediction of an aircraft with time array analysis[J]. Gas Turbine Experiment and Research, 2001, 14(1): 30-32. (in Chinese) |