能量沉积点火控制斜爆轰起爆研究

  • 郑皓 ,
  • 陆亚辉 ,
  • 王宽亮 ,
  • 涂胜甲 ,
  • 牛淑贞
展开
  • 1. 北京理工大学
    2. 北京动力研究所

收稿日期: 2025-04-27

  修回日期: 2025-07-09

  网络出版日期: 2025-07-15

基金资助

专项项目;国家杰出青年科学基金;联合基金项目

Investigation of Oblique Detonation Initiation via Energy Deposition-Based Ignition Control

  • ZHENG Hao ,
  • LU Ya-Hui ,
  • WANG Kuan-Liang ,
  • TU Sheng-Jia ,
  • NIU Shu-Zhen
Expand

Received date: 2025-04-27

  Revised date: 2025-07-09

  Online published: 2025-07-15

摘要

在低马赫数飞行条件下,斜爆轰发动机面临起爆与气流压损之间的矛盾。较小楔面角度难以实现稳定起爆,而较大楔面角度则会导致较大的气流压损。为平衡这一矛盾,本文引入能量沉积点火技术,探究单次点火对斜爆轰波的起爆与稳定燃烧的影响。考虑了壁面粘性效应,并通过基元反应模型求解非定常Navier-Stokes方程进行数值模拟。研究表明,单次点火能够有效诱导爆轰波的起爆,并在特定条件下维持自持燃烧。数值模拟不同点火源高度下斜爆轰波的演化过程,发现点火位置过高时,火焰面与前导激波无法有效耦合,导致起爆失败。进一步通过对比无粘流与粘性流的结果,揭示了火焰面引发的强横波结构诱导回流区的形成,而回流区的产生单次点火能够实现爆轰波重新起爆并稳定传播的关键。

本文引用格式

郑皓 , 陆亚辉 , 王宽亮 , 涂胜甲 , 牛淑贞 . 能量沉积点火控制斜爆轰起爆研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32166

Abstract

Under low Mach number flight conditions, oblique detonation engines face the inherent contradiction between reliable initiation and flow pressure loss. Smaller wedge angles prove insufficient to achieve stable detonation initiation, while larger wedge angles induce excessive total pressure dissipation. To address this trade-off, this study introduces energy deposition ignition technology to investigate how single-pulse ignition affects oblique detonation wave initiation and combustion stabilization. Incorporating wall viscous effects, numerical simulations are conducted through detailed chemical reaction modeling and unsteady Navier-Stokes equations resolution. The results demonstrate that single-pulse ignition effectively induces detonation wave initiation and maintains self-sustained combustion under specific conditions. Evolution analysis of oblique detonation waves under varying ignition source heights reveals that excessively elevated ignition positions prevent effective coupling between flame fronts and leading shock waves, resulting in initiation failure. Comparative analysis between inviscid and viscous flow configurations unveils that strong transverse wave structures induced by flame fronts promote recirculation zone formation. Crucially, the emergence of recirculation zones enables re-initiation and stable propagation of detonation waves through single-pulse ignition.

参考文献

[1]JIANG Z L.Standing oblique detonation for hypersonic propulsion: A review[J].Progress in Aerospace Sciences, 2023, 143(143):100955-100955
[2]YANG P F, NG H D, TENG H H, et al.Initiation structure of oblique detonation waves behind conical shocks[J].Physics of Fluids, 2017, 29(8):1-10
[3]杨鹏飞,张子健,杨瑞鑫,等.斜爆轰发动机的推力性能理论分析[J].力学学报, 2021, 53(10):2853-2864
[4]YANG P F, ZHANG Z J, YANG R X, et al.Theoretical analysis of thrust performance in oblique detonation engines[J].Acta Mechanica Sinica, 2021, 53(10):2853-2864
[5]HE G S, FENG Z L, WANG K L, et al.Unsteady wave characteristics of oblique detonation wave in a contraction–expansion channel[J].International Journal of Hydrogen Energy, 2024, 71:999-1005
[6]滕宏辉,姜宗林.斜爆轰的多波结构及其稳定性研究进展[J].力学进展, 2020, 50(0):50-92
[7]TENG H H, JIANG Z L.Multi-wave configurations and stability of oblique detonation: Research advances , : 50–92. (in Chinese)[J].Advances in Mechanics, 2020, 50(0):50-92
[8]YANG P F, YU D H, CHEN Z, et al.Effects of thermal stratification on detonation development in hypersonic reactive flows[J].PHYSICAL REVIEW FLUIDS, 2024, 9(8):083202-083202
[9]张博, 白春华.气相爆轰动力学特征研究进展[J].中国科学物理学·力学·天文学, 2014, 44(7):665-681
[10]ZHANG B, BAI C H.Advances in gaseous detonation dynamics[J].Science China Physics, Mechanics & Astronomy, 2014, 44(7):665-681
[11]YANG P F, NG H D, TENG H H.Numerical study of wedge-induced oblique detonations in unsteady flow[J].Journal of fluid mechanics, 2019, 876(1):264-287
[12]TENG H H, LIU S Y, LI Z Z, et al.Effect of ozone addition on oblique detonations in hydrogen-air mixtures[J].Applied Thermal Engineering, 2024, 240(0):122292-122292
[13]YANG P F, TENG H H, NG H D et al.A numerical study on the instability of oblique detonation waves with a two-step induction–reaction kinetic model[J].Proceedings of the Combustion Institute, 2019, 37(3):3537-3544
[14]SUN J, YANG P F, TIAN B L, et al.Evolution and Control of Oblique Detonation Wave Structure in Unsteady Inflow[J].AIAA JOURNAL, 2023, 61(11):4808-4820
[15]YANG P F, TENG H H, JIANG Z L, et al.Effects of inflow Mach number on oblique detonation initiation with a two step induction_reaction kinetic model[J].Combustion & Flame, 2018, 193(0):246-256
[16]TENG H H, NG H D, JIANG Z L.Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture[J].Proceedings of the Combustion Institute, 2017, 36(2):2735-2742
[17]PRATT D T, HUMPHREY J W et al.Morphology of standing oblique detonation waves[J].Propul. Power, 1991, 7(5):837-845
[18]TENG H H, ZHANG Y H, YANG P F, JIANG Z L.Oblique detonation wave triggered by a double wedge in hypersonic flow[J].Chinese Journal of Aeronautics, 2022, 35(4):176-184
[19]FANG Y, ZHANG Z, HU Z, DENG X.Initiation of oblique detonation waves induced by a blunt wedge in stoichiometric hydrogen-air mixtures[J].Aerosp.Sci.Technol, 2019, 92(0):676-684
[20]YANG L, YUE L J, ZHANG Q F.Onset of Oblique Detonation Waves for a Cavity-Based Wedge[J].AIAA Journal, 2022, 60(5):2836-2849
[21]QIN Q Y, ZHANG X B.A novel method for trigger location control of the oblique detonation wave by a modified wedge[J].Combustion & Flame, 2018, 197(0):65-77
[22]ZHANG Y C, XIANG G X.Investigations on the initiation characteristics of radical-assisted oblique detonation waves generated by plasma discharges[J].Aerospace Science and Technology, 2024, 153:109466-109466
[23]LI H, LI J, XIONG C, et al.Investigation of hot jet on active control of oblique detonation waves[J].Chin. J. Aeronaut, 2020, 33(3):861-869
[24]QIN Q, ZHANG X.Study on the initiation characteristics of the oblique detonation wave by a co-flow hot jet[J].Acta Astronaut, 2020, 177(0):86-95
[25]WANG A, BIAN J, TENG H H.Numerical study on initiation of oblique detonation wave by hot jet[J].Applied Thermal Engineering, 2022, 213(Suppl C):118679-118679
[26]ZHANG W, ZHANG Z J, JIANG Z L, et al.Numerical investigation of free oblique detonation wave induced by non-intrusive energy deposition[J].AIP Advances, 2021, 11(12):125119-125119
[27]XIN Y, SHANG J, XIANG G, et al.Investigation on Accelerated Initiation of Oblique Detonation Wave Induced by Laser-Heating Hot-Spot[J].Aerospace, 2024, 11(6):485-485
[28]WILSON G J, MACCORMACK R W.Modeling supersonic combustion using a fully implicit numerical method[J].AIAA Journal, 1992, 30(4):1008-1015
[29]JACHIMOWSKI C J.Analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion[J]., 1988, :-
[30]郗雪辰, 牛淑贞, 杨鹏飞, 等.氢气燃料斜爆轰发动机内波系对楔面调控的动态响应特性[J].航空学报, 2024, 45(22):126-140
[31]XI X C, NIU S Z, YANG P F, et al.Dynamic response characteristics of wave system to wedge angle modulation in hydrogen-fueled oblique detonation engines[J].Acta Aeronautica et Astronautica Sinica, 2024, 45(22):126-140
[32]TAYLOR G, The Formation of a Blast Wave by a Very Intense Explosion.ITheoretical Discussion [I]. Proceedings of the Royal Society of LondonSeries A, Mathematical and Physical Sciences, 1950, 201(1065): 159-174.
[33]KIELKOPF J F.Spectroscopic study of laser-produced plasmas in hydrogen[J].Physical Review E, 1995, 52(2):2013-2024
[34]FANG Y, ZHANG Z, HU Z.Effects of boundary layer on wedge-induced oblique detonation structures in hydrogen-air mixtures[J].International Journal of Hydrogen Energy, 2019, 44(41):23429-23435
[35]MIAO S K, XU D, SONG T L, et al.Shock wave Boundary Layer Interactions in Wedge-induced Oblique Detonations[J].Combustion Science and Technology, 2020, 192(12):2345-2370
[36]sLIU Y, CHEN W Q, WANG L, et al.Oblique Detonation Initiation by an Instantaneous Energy Source in High-Speed Wedge Flows[J].AIAA JOURNAL, 2021, 59(11):4794-4799
文章导航

/