面向空间交会对接、编队构型、在轨服务、穿行规避等任务场景需求,在起止状态明确,需经过若干期望途经点的空间多脉冲相对制导过程中,为获得航天器的最优燃料消耗,需优化制导轨迹及控制过程,确定合理的途经顺序、途经时刻和途经速度。在离散时间系统中,利用系统动力学状态转移模型,通过变量替换和递进迭代方法,用已知的状态和待求的制导控制序列表示未知的途经点相对速度,结合广义逆最小二乘解,得到全局二范数最优的控制序列,进而设计出了时间和途经点位置约束下,空间相对制导的模型预测与反演制导控制方法。为进一步优化制导过程燃料消耗,采用遗传算法搜索经过各途经点的途经顺序和最优时刻。近圆轨道交会制导控制的仿真结果表明,在约束/不约束途经点途经顺序、经过时间条件下,所提出的方法能够在与途经时刻、途经顺序相关的三种场景下,实现精度高、代价小、柔滑平顺的的相对制导控制燃料消耗寻优。
To meet the requirements of mission scenarios such as space rendezvous and docking, formation configuration, in orbit services, and maneuvering avoidance, in the process of space multi pulse relative guidance with clear starting and ending states and passing through several expected waypoints, in order to obtain the optimal fuel consumption of the spacecraft, it is necessary to optimize the guidance trajectory and control process, determine a reasonable passing sequence, passing time, and passing speed.In discrete-time systems, based on the system dynamics state transition model, variable substitution and progressive iteration methods are used to represent the unknown relative velocity of the waypoint using known states and the guidance control sequence to be solved. Combined with the generalized inverse least squares solution, the optimal control sequence under the global two norm condition is obtained. Then, a model prediction and inversion guidance control method for spatial relative guidance under time and waypoint position constraints is designed.To further optimize the fuel consumption during the guidance process, a genetic algorithm is used to search for the sequence and optimal time of passing through each waypoint. The simulation results of near circular orbit rendezvous guidance control show that the proposed method can achieve fuel consumption optimization in high-precision, smooth relative guidance control processes under the conditions of constrained/unconstrained waypoint sequence and passage time in three scenarios related to passage time and sequence..
[1] 张柏楠. 航天器交会对接任务分析与设计[M]. 北京: 科学出版社, 2011.6..
Zhang B N. Analysis and Design of Spacecraft rendezvous and docking missions [M]. Beijing: Science Press, June 2011
[2] 李革非. 交会对接轨道控制规划[M]. 北京: 国防工业出版社, 2016.9.
Li G F. Rendezvous and docking orbit control planning [M]. Beijing: National Defense Industry Press, September 2016.
[3] 黄成. 航天器交会对接有限时间控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.3.
HUANG C. Research on Finite-time Control for Spacecraft Rendezvous and Docking[D]. Harbin: Harbin Institute of Technology, 2018.3.
[4] 解永春, 陈长春, 刘涛, 等. 航天器交会对接制导、导航控制原理和方法[M]. 北京: 国防工业出版社, 2024.4.
Xie Y C, Chen C C, Liu T, etc Principles and Methods of Guidance and Navigation Control for Spacecraft rendezvous and docking [M]. Beijing: National Defense Industry Press, April 2024.
[5] 林来兴. 空间交会对接的发展历程[J]. 国际太空, 2018.10, (478):39-42.
LING L X. Development course of space rendezvous and docking[J]. 2018.10, (478):39-42.
[6] 刘滔, 赵育善. 混合法求解考虑路径约束的持续推力快速机动轨道[J]. 宇航学报, 2009.7, 30(4):1365-1370.
LIU T, ZHAO Y S. Path constrained trajectory optimization using hybrid method[J]. Journal of Astronautics, 2009.7, 30(4):1365-1370.
[7] 张晓天, 奚勇, 刘怡青, 等. 面向探测效能增强的导弹路径规划方法[J]. 飞控与探测, 2023.3, 6(30):78-85.
ZHANG X T, XI Y, LIU Y Q, et.al. Missile path planning method for detection efficiency enhancement[J]. Flight Control & Detection, 2023.3, 6(30):78-85.
[8] 张超. 考虑路径约束的高超声速滑翔制导方法[D]. 哈尔滨: 哈尔滨工业大学, 2022.
ZHANG C. Hypersonic gliding guidance method with path constraints[D]. Harbin: Harbin Institute of Technology, 2022.
[9] 刘栋. 必经点K短路径的粒子群优化算法研究[D]. 西安:西安理工大学, 2018.
Liu D. Particle swarm optimization for K-Shortest paths via designated points[D], Xi’an: Xi’an University of Technology, 2018.
[10] 王小会, 薛延刚, 李晓青. 基于Dijkstra算法过必经点的最短路径设计[J]. 陕西理工大学学报(自然科学版), 2020.6, 36(3):68-73.
WANG X H, XUE Y G, LI X Q. Design of the shortest path of passing the necessary points based on dijkstra algorithm[J]. Journal of Shaanxi University of Technology ( Natural Science Edition), 2020.6, 36(3):68-73.
[11] 张晶晶, 王建清, 李桂芳, 等. 基于飞行角度优化的蚁群改进算法[J]. 飞控与探测, 21.11, 4(21):9-15.
ZHANG J J, WANG J Q, LI G F, et.al. Improved ant colony algorithm based on flight angle optimization[J]. Flight Control & Detection. 21.11, 4(21):9-15.
[12] 肖红, 王勇, 国海峰, 等. 基于航路点的高超声速飞行器预测校正制导律设计[J]. 电光与控制, 2013.10, 20(10):33-37.
XIAO H, WANG Y, GUO H F, et.al. Design of waypoint based predictor-corrector guidance law for hypersonic vehicles[J]. Electronics Optics&Control, 2013.10, 20(10):33-37.
[13] 李强. 高超声速滑翔飞行器再入制导控制技术研究[D]. 北京: 北京理工大学, 2015.
Li Q. Study on reentry guidance and control Method of hypersonic gliding vehicle[D]. Beijing: Beijing Institute of Technology, 2015.
[14] 李新三, 周小刚, 汪立新, 等. 带多个弹道路径点约束的扩展MPSP制导方法[J]. 中国惯性技术学报, 2019.6, 27(3):390-396.
Li X S, Zhou X G, Wang L X, etc Guidance method by extended model predictive static programming with multiple way-points constraints[J]. Chinese Journal of Inertial Technology, June 2019, 27 (3): 390-396
[15] 王学林, 邢仁鹏, 肖永飞, 等. 机械臂途经N路径点的连续轨迹插补算法研究[J]. 组合机床与自动化加工技术, 2014.11, (11): 92-96.
WANG X L, XING R P, XIAO Y F, et.al. Efficient interpolation al gori thms through n points in robot ic cont inuous path[J], Modular Machine Tool & Automatic Manufacturing Technique, 2014.11, (11): 92-96.
[16] 边信黔, 牟春晖, 严浙平, 等. 基于自适应反步法的欠驱动UUV空间路径点跟踪控制[J]. 中国造船, 2011.12, 52(4):38-45.
BIAN X Q, MOU C H, YAN Z P, et.al. Way-Point tracking control for underactuated UUV based on adaptive backstepping[J]. Ship building of China, 2011.12, 52(4):38-45.
[17] Wigbert F. Automated rendezvous and docking of spacecraft [M]. Cambridge, Britain: Cambridge Universitty Press,2003:429-434.
[18] 王松桂, 杨振海. 广义逆矩阵及其应用[M]. 北京:北京工业大学出版社, 1996.1-3.
Wang S G, Yang Z H Generalized Inverse Matrix and Its Applications [M]. Beijing: Beijing Institute of Technology Press, 1996,1-3.
[19] 谭天乐. 航天器交会对接的模型预测与反演制导控制[J]. 控制与决策, 2019.04, 34(4):793-798.
TAN T L. Model predictive and inversive guidance and control for spacecraft rendezvous and docking[J]. Control and Decision, 2019.04, 34(4):793-798.