展向多参数可变的新型宽速域乘波体设计方法-重大问题专栏

  • 段佳昕 ,
  • 刘愿 ,
  • 高亮杰 ,
  • 钱战森
展开
  • 中国航空工业空气动力研究院

收稿日期: 2025-04-11

  修回日期: 2025-06-28

  网络出版日期: 2025-07-03

A novel wide-speed range waverider design method with variable multi-parameter along the spanwise

  • DUAN Jia-Xin ,
  • LIU Yuan ,
  • GAO Liang-Jie ,
  • QIAN Zhan-Sen
Expand

Received date: 2025-04-11

  Revised date: 2025-06-28

  Online published: 2025-07-03

摘要

摘 要:乘波体因其在高超声速条件下通过激波压缩效应产生的高升阻比特性,成为高超声速飞行器布局设计的重点研究方向,但也存在非设计工况下气动性能急剧恶化、气动性能与容积难以兼顾等难题。针对上述问题,发展了一种基于吻切理论的展向多参数可调控乘波体设计方法,通过不同马赫数-激波角组合的基准流场生成特征流线族,实现激波系空间分布的主动调控,进而兼顾非设计点气动性能和容积需求。研究结果表明,该设计方法所获得的乘波体流场结构与数值仿真结果一致,设计方法可靠;在保持等容积、等长度和等宽度的约束条件下,相对于定参数设计的传统乘波体,展向多参数可变乘波体的升阻比提升幅度平均约17.01%,升力系数提高平均约12.63%;宽马赫数(Ma6-10)范围内新构型的升阻比衰减率控制在1.8%以内,显著提升了乘波体宽速域的气动性能。该乘波体设计方法通过展向参数主动调控实现了气动性能与容积的协同设计,为突破传统乘波体性能局限提供了新思路,对宽速域高超声速飞行器工程应用具有一定的借鉴意义。

本文引用格式

段佳昕 , 刘愿 , 高亮杰 , 钱战森 . 展向多参数可变的新型宽速域乘波体设计方法-重大问题专栏[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32109

Abstract

The waverider configuration has emerged as a pivotal research focus in hypersonic vehicle design due to its high lift-to-drag ratio characteristics achieved through shock compression effects. However, it faced inherent challenges including significant degradation of aerodynamic performance at off-design conditions and persistent difficulties in balancing aerodynamic performance with volume. To address these issues, this study developed a novel waverider design method with variable multi-parameter along the spanwise based on osculating theory. By generating characteristic streamline families from basic flowfields with varying Mach number-shock angle combinations, the approach achieved active control of shock wave spatial distribution, thereby simultaneously addressing off-design aerodynamic performance and volumetric requirements. Results showed consistent flowfield structure between the designed waverider and numerical simulations, confirming method reliability. Under fixed-volume, fixed-length, and fixed-width constraints, variable multi-parameter waverider along the spanwise delivered average improvements of 17.01% in lift-to-drag ratio and 12.63% in lift coefficient versus conventional fixed-parameter waveriders. The novel waverider maintained lift-to-drag ratio attenuation below 1.8% across Ma6-10, significantly enhancing wide-speed aerodynamic performance. This methodology established a synergistic design framework for aerodynamic performance and volume through active spanwise parameter control, offering an innovative solution to overcome the limitations of the traditional waverider. The results provide valuable insights for engineering applications of wide-speed hypersonic vehicles.

参考文献

[1]蔡国飚, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012.
CAI G B, XU D J,Hypersonic Vehicle Technology. Beijing: Science Press, 2012 (in Chinese).
[2]王旭东. 吸气式高超声速飞行器内外流一体化乘波气动布局设计技术研究[D]. 南京: 南京航空航天大学,
2019.
WANG X D. Research on airframe/inlet integrated wa-verider aerodynamic design technology of air-
breathing hypersonic vehicles. [D]. Nanjing: Nanjing University Of Aeronautics and Astronautics,
2019 (in Chinese).
[3]WANG F, FAN P F, ZHANG J, et al. Preventing inlet unstart in air breathing hypersonic vehicles
using adap-tive backstepping control with state constraints[J]. Acta Astronautica, 2023, 211:
498-509.
[4]范阳涛, 汪民乐, 朱亚红等. 临近空间高超声速飞行器作战应用研究[J]. 飞航导弹,2014(5): 15-19.
FAN Y T, WANG M Y, ZHU Y H, et al. Research on operational application of near space hypersonic
vehicle[J]. Winged Missiles journal,2014, 5: 15-19 (in Chinese).
[5]Aleksandra Dzido, Piotr Krawczyk. Numerical analysis of supersonic flow through dry-ice blasting
nozzles: Comparative study of nozzle designs and particle transport efficiency[J]. Applied Thermal Engineering, 2025, 266: 1359-4311
[6]S.L. CHERNYSHEV, M.A. POGOSYAN, K.I. SYPALO, On ecologically-safe high-speed vehicles: Conceptual
design study of the next generation super-sonic transport[J]. Acta Astronautica, 2024, 216: 437-
445
[7]HILTON S, SABATINI R, GARDI A, et al. Space traf-fic management: towards safe and unsegregated
space transport operations[J]. Progress in Aerospace Sciences, 2019, 105: 98-125.
[8]GE T S, CHAI R Q, ZHU Q H, et al. Adaptive multi-variate reusable launch vehicles reentry
attitude control with pre-specified performance in the presence of un-matched disturbances[J].
Aerospace Science and Tech-nology, 2024, 145: 1270-9638.
[9]APROVITOLA A, MONTELLA N, IUSPA L, et al. An optimal heat-flux targeting procedure for LEO re-
entry of reusable vehicles[J]. Aerospace Science and Tech-nology, 2021,112: 106608.
[10]CALLSEN S, WILKEN J, STAPPERT S, et al. Feasible options for point-to-point passenger transport
with rocket propelled reusable launch vehicles[J]. Acta As-tronautica, 2023, 212: 100-110.
[11]陈树生, 张兆康, 李金平, 等. 一种宽速域乘波三角翼气动布局设计[J]. 航空学报, 2023, 44(24): 128441.
CHEN S S, ZHANG Z K, LI J P, et al. Aerodynamic Layout Design of A Wide-velocity Waverider Delta
Wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 128441 (in Chinese).
[12]RASMUSSEN M L, JISCHKE M C, DANIEL D C. Wavrider configurations derived from inclined circular
and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(6): 537-545.
[13]SOBIECZKY H, DOUGHERTY F C, JONES K D. Hypersonic waverider design from given shock waves[J].
DLR, 1990.
[14]MAZHUL’ I. Off-design regimes of flow past waverid-ers based on isentropic compression
flows[J]. Flu-id Dynamics, 2010, 45(2): 271-280.
[15]MUSA O, HUANG G P, YU Z H. Assessment of new pressure corrected design method for hypersonic
inter-nal waverider intake[J], Acta Astronautica, 2022, 201: 230-246.
[16]戴今钊, 汤继斌, 陈海昕. 高超声速飞行器中的乘波设计综述[J]. 战术导弹技术, 2021, 4: 1-15.
DAI J Z, TANG J B, CHEN H X. An Overview of Wa-verider Design In Hypersonic Vehicles[J].
Tactical Missile Technology, 2021, 4: 1-15 (in Chinese).
[17]QIAO N X, MA T L, JING B, et al. Design and aerody-namic analysis of the morphing waverider with
rotating telescopic wing for wide-speed-range flight[J]. Aero-space Science and Technology,
2025, 158: 1270-9638.
[18]ZHAO Z T, HUANG W, YAN L, et al. Low speed aero-dynamic performance analysis of vortex lift
waveriders with a wide-speed range[J]. Acta Astronautica, 2019, 161: 209-221.
[19]孙祥程,韩忠华,柳斐,等. 高超声速飞行器宽速域翼型/机翼设计与分析[J].航空学报,2018, 39(6):
121737.
SUN X C, HAN Z H, LIU F, et al. Design and analysis of hypersonic vehicle airfoil/wing at wider-
ange Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 121737.(in Chinese)
[20]刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析[J]. 航空学报, 2017, 38(6): 104-114.
LIU C Z, BAI P, CHEN B Y. Design and property ad-vantages analysis of double swept waverider[J].
Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 104-114 (in Chinese).
[21]WANG J F, LIU C Z, BAI P, et al. Design methodology of the waverider with a controllable planar
shape[J]. Acta Astronautica, 2018, 151(10): 504-510.
[22]LIU C Z, BAI P, YANG Y J, et al. Double Swept Wa-verider from Osculating-Cone Method[J]. Journal
of Aerospace Engineering, 2018, 31(6): 06018004.1-06018004.5.
[23]李珺, 易怀喜, 王逗, 等. 基于投影法的双后掠乘波体气动性能研究[J]. 航空学报, 2021, 42(9): 124703.
LI J, YI H X, WANG D, et al. Research on aerodynam-ic performance of double swept waverider
based on projection method[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 124703 (in
Chinese).
[24]王发民, 李立伟, 姚文秀, 等. 乘波飞行器构型方法研究. 力学学报, 2004, 36(5): 513-519
WANG F M, Li L W, YAO W Z, et al. Research on wa-verider configuraton method. Acta Mechanica
Sinica, 2004, 36(5): 513-519(in Chinese))
[25]王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学: 技术科学, 2009, 39(11):
1828-1835.
WANG F M, DING H H, LEI M F. Study on wide-velocity aerodynamic characteristics of waverider
lay-out aircraft[J]. SCIENTIA SINICA Technologica, 2009, 39(11): 1828-1835 (in Chinese).
[26]WANG F M,, DING H H, LEI M F. Aerodynamic char-acteristics research on wide speed range
waverider con-figuration. Science China Technology Science, 2009, 52(10): 2903-2910.
[27]LI S B, HUANG W, WANG Z, et al. Design and aero-dynamic investigation of a parallel vehicle on a
wide-speed range[J]. Science China Information Sciences, 2014, 57(12): 1-10.
[28]ZHANG T T, WANG Z, HUANG W, et al. A design approach of wide-speed-range vehicles based on the
cone-derived theory[J]. Aerospace Science and Tech-nology, 2017, 71: 42-51.
[29]刘珍. 吻切流场乘波气动设计理论和方法研究[D].长沙: 国防科学技术大学, 2018.
LIU Z. Research on novel aerodynamic design the-oryand methodology for osculating flowfield
waverid-er[D]. Changsha: National University of Defense Tech-nology, 2018 (in Chinese).
[30]LI S B, HUANG W, WANG Z, et al. Design and aero-dynamic investigation of a parallel vehicle on a
wide-speed range[J]. Science China Information Sciences, 2014, 57(12): 1-10.
[31]高亮杰,辛亚楠,袁野,等. 航空工业1 m量级高超声速风洞设计与建设进展[J]. 实验流体力学,2022,36
(1):44-51.
GAO L J,XIN Y N,YUAN Y,et al. Design and construction progress of AVIC Φ1.0 m hypersonic
wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36 (1): 44-51.
[32]崔春. 1.2m 三声速风洞流场性能的试验研究[D]. 长沙:国防科技大学,2012.
CUI C. Experimental study on flow field performance of 1.2m three speed wind tunnel[D].
Changsha: Na-tional University of Defense Technology, 2012. (in Chinese)
文章导航

/