[1]蔡国飚, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012.
CAI G B, XU D J,Hypersonic Vehicle Technology. Beijing: Science Press, 2012 (in Chinese).
[2]王旭东. 吸气式高超声速飞行器内外流一体化乘波气动布局设计技术研究[D]. 南京: 南京航空航天大学,
2019.
WANG X D. Research on airframe/inlet integrated wa-verider aerodynamic design technology of air-
breathing hypersonic vehicles. [D]. Nanjing: Nanjing University Of Aeronautics and Astronautics,
2019 (in Chinese).
[3]WANG F, FAN P F, ZHANG J, et al. Preventing inlet unstart in air breathing hypersonic vehicles
using adap-tive backstepping control with state constraints[J]. Acta Astronautica, 2023, 211:
498-509.
[4]范阳涛, 汪民乐, 朱亚红等. 临近空间高超声速飞行器作战应用研究[J]. 飞航导弹,2014(5): 15-19.
FAN Y T, WANG M Y, ZHU Y H, et al. Research on operational application of near space hypersonic
vehicle[J]. Winged Missiles journal,2014, 5: 15-19 (in Chinese).
[5]Aleksandra Dzido, Piotr Krawczyk. Numerical analysis of supersonic flow through dry-ice blasting
nozzles: Comparative study of nozzle designs and particle transport efficiency[J]. Applied Thermal Engineering, 2025, 266: 1359-4311
[6]S.L. CHERNYSHEV, M.A. POGOSYAN, K.I. SYPALO, On ecologically-safe high-speed vehicles: Conceptual
design study of the next generation super-sonic transport[J]. Acta Astronautica, 2024, 216: 437-
445
[7]HILTON S, SABATINI R, GARDI A, et al. Space traf-fic management: towards safe and unsegregated
space transport operations[J]. Progress in Aerospace Sciences, 2019, 105: 98-125.
[8]GE T S, CHAI R Q, ZHU Q H, et al. Adaptive multi-variate reusable launch vehicles reentry
attitude control with pre-specified performance in the presence of un-matched disturbances[J].
Aerospace Science and Tech-nology, 2024, 145: 1270-9638.
[9]APROVITOLA A, MONTELLA N, IUSPA L, et al. An optimal heat-flux targeting procedure for LEO re-
entry of reusable vehicles[J]. Aerospace Science and Tech-nology, 2021,112: 106608.
[10]CALLSEN S, WILKEN J, STAPPERT S, et al. Feasible options for point-to-point passenger transport
with rocket propelled reusable launch vehicles[J]. Acta As-tronautica, 2023, 212: 100-110.
[11]陈树生, 张兆康, 李金平, 等. 一种宽速域乘波三角翼气动布局设计[J]. 航空学报, 2023, 44(24): 128441.
CHEN S S, ZHANG Z K, LI J P, et al. Aerodynamic Layout Design of A Wide-velocity Waverider Delta
Wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 128441 (in Chinese).
[12]RASMUSSEN M L, JISCHKE M C, DANIEL D C. Wavrider configurations derived from inclined circular
and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(6): 537-545.
[13]SOBIECZKY H, DOUGHERTY F C, JONES K D. Hypersonic waverider design from given shock waves[J].
DLR, 1990.
[14]MAZHUL’ I. Off-design regimes of flow past waverid-ers based on isentropic compression
flows[J]. Flu-id Dynamics, 2010, 45(2): 271-280.
[15]MUSA O, HUANG G P, YU Z H. Assessment of new pressure corrected design method for hypersonic
inter-nal waverider intake[J], Acta Astronautica, 2022, 201: 230-246.
[16]戴今钊, 汤继斌, 陈海昕. 高超声速飞行器中的乘波设计综述[J]. 战术导弹技术, 2021, 4: 1-15.
DAI J Z, TANG J B, CHEN H X. An Overview of Wa-verider Design In Hypersonic Vehicles[J].
Tactical Missile Technology, 2021, 4: 1-15 (in Chinese).
[17]QIAO N X, MA T L, JING B, et al. Design and aerody-namic analysis of the morphing waverider with
rotating telescopic wing for wide-speed-range flight[J]. Aero-space Science and Technology,
2025, 158: 1270-9638.
[18]ZHAO Z T, HUANG W, YAN L, et al. Low speed aero-dynamic performance analysis of vortex lift
waveriders with a wide-speed range[J]. Acta Astronautica, 2019, 161: 209-221.
[19]孙祥程,韩忠华,柳斐,等. 高超声速飞行器宽速域翼型/机翼设计与分析[J].航空学报,2018, 39(6):
121737.
SUN X C, HAN Z H, LIU F, et al. Design and analysis of hypersonic vehicle airfoil/wing at wider-
ange Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 121737.(in Chinese)
[20]刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析[J]. 航空学报, 2017, 38(6): 104-114.
LIU C Z, BAI P, CHEN B Y. Design and property ad-vantages analysis of double swept waverider[J].
Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 104-114 (in Chinese).
[21]WANG J F, LIU C Z, BAI P, et al. Design methodology of the waverider with a controllable planar
shape[J]. Acta Astronautica, 2018, 151(10): 504-510.
[22]LIU C Z, BAI P, YANG Y J, et al. Double Swept Wa-verider from Osculating-Cone Method[J]. Journal
of Aerospace Engineering, 2018, 31(6): 06018004.1-06018004.5.
[23]李珺, 易怀喜, 王逗, 等. 基于投影法的双后掠乘波体气动性能研究[J]. 航空学报, 2021, 42(9): 124703.
LI J, YI H X, WANG D, et al. Research on aerodynam-ic performance of double swept waverider
based on projection method[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 124703 (in
Chinese).
[24]王发民, 李立伟, 姚文秀, 等. 乘波飞行器构型方法研究. 力学学报, 2004, 36(5): 513-519
WANG F M, Li L W, YAO W Z, et al. Research on wa-verider configuraton method. Acta Mechanica
Sinica, 2004, 36(5): 513-519(in Chinese))
[25]王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学: 技术科学, 2009, 39(11):
1828-1835.
WANG F M, DING H H, LEI M F. Study on wide-velocity aerodynamic characteristics of waverider
lay-out aircraft[J]. SCIENTIA SINICA Technologica, 2009, 39(11): 1828-1835 (in Chinese).
[26]WANG F M,, DING H H, LEI M F. Aerodynamic char-acteristics research on wide speed range
waverider con-figuration. Science China Technology Science, 2009, 52(10): 2903-2910.
[27]LI S B, HUANG W, WANG Z, et al. Design and aero-dynamic investigation of a parallel vehicle on a
wide-speed range[J]. Science China Information Sciences, 2014, 57(12): 1-10.
[28]ZHANG T T, WANG Z, HUANG W, et al. A design approach of wide-speed-range vehicles based on the
cone-derived theory[J]. Aerospace Science and Tech-nology, 2017, 71: 42-51.
[29]刘珍. 吻切流场乘波气动设计理论和方法研究[D].长沙: 国防科学技术大学, 2018.
LIU Z. Research on novel aerodynamic design the-oryand methodology for osculating flowfield
waverid-er[D]. Changsha: National University of Defense Tech-nology, 2018 (in Chinese).
[30]LI S B, HUANG W, WANG Z, et al. Design and aero-dynamic investigation of a parallel vehicle on a
wide-speed range[J]. Science China Information Sciences, 2014, 57(12): 1-10.
[31]高亮杰,辛亚楠,袁野,等. 航空工业1 m量级高超声速风洞设计与建设进展[J]. 实验流体力学,2022,36
(1):44-51.
GAO L J,XIN Y N,YUAN Y,et al. Design and construction progress of AVIC Φ1.0 m hypersonic
wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36 (1): 44-51.
[32]崔春. 1.2m 三声速风洞流场性能的试验研究[D]. 长沙:国防科技大学,2012.
CUI C. Experimental study on flow field performance of 1.2m three speed wind tunnel[D].
Changsha: Na-tional University of Defense Technology, 2012. (in Chinese)