基于模型预测控制的舰载机动态复合控制方法

  • 段俊屹 ,
  • 刘凯 ,
  • 安帅斌 ,
  • 王国庆 ,
  • 董哲
展开
  • 大连理工大学

收稿日期: 2025-03-28

  修回日期: 2025-06-22

  网络出版日期: 2025-06-27

基金资助

装备预研教育部联合基金

Dynamic Compound Control Method of Carrier-based Aircraft Based on Model Predictive Control

  • DUAN Jun-Yi ,
  • LIU Kai ,
  • AN Shuai-Bin ,
  • WANG Guo-Qing ,
  • DONG Zhe
Expand

Received date: 2025-03-28

  Revised date: 2025-06-22

  Online published: 2025-06-27

摘要

针对复杂环境干扰条件下多操纵面舰载机精确着舰控制问题,提出一种基于模型预测控制与预设性能增量动态逆的舰载机动态复合控制方法。首先,结合直接升力控制策略,采用预设性能思想建立等效误差模型,通过空间对等变换将航迹角和迎角跟踪约束问题映射为转换误差有界性问题;其次,基于非线性增量动态逆设计了航迹角跟踪回路和迎角保持回路的控制律,结合等效误差模型设计的控制律中不显含模型状态反馈项,降低了控制律对精确模型的依赖性;随后,引入模型预测控制策略实现多操纵面直接升力/俯仰力矩复合分配,综合考虑控制性能、舵面约束与偏转动态特性,通过有限预测时域内的滚动优化实现控制指令的动态分配;最后,通过仿真验证了本文设计的方法能够有效提高多操纵面舰载机着舰控制的鲁棒性和精度。

本文引用格式

段俊屹 , 刘凯 , 安帅斌 , 王国庆 , 董哲 . 基于模型预测控制的舰载机动态复合控制方法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32040

Abstract

Aiming at the problem of accurate landing control of carrier-based aircraft with multiple control surfaces under complex environmen-tal interference conditions, a dynamic compound control method based on model predictive control and incremental dynamic inverse of prescribed performance is proposed. Firstly, combined with the direct lift control strategy, the equivalent error models are estab-lished by using the idea of prescribed performance, and the tracking constraint problem of flight path angle and angle of attack is mapped to the conversion error boundness problem by spatial equivalence transformation. Secondly, the control law of flight path angle tracking loop and angle of attack holding loop is designed based on incremental nonlinear dynamic inversion, and the control law designed with equivalent error model does not contain the model state feedback items, which reduces the dependence of the con-trol law on the exact model. Then, the model predictive control strategy is introduced to realize the compound allocation of direct lift/pitching moment on multiple control surfaces. The dynamic allocation of control commands is realized by rolling optimization in the finite predictive time domain, considering the control performance, rudder surface constraint and rudder dynamic characteristics. Finally, simulation results show that the proposed method can effectively improve the robustness and accuracy of multi-control sur-face carrier landing control.
文章导航

/