[1]WANG G Z, PEI B B, XU H J, et al. Risk quantifica-tion and visualization method for loss-of-control sce-narios in flight[J]. Aerospace, 2023, 10(5): 416. DOI:10.3390/aerospace10050416.
[2]WANG G Z, XU H J, PEI B B. An intelligent approach for flight risk prediction under icing conditions[J]. Chinese Journal of Aeronautics, 2023, 36(6):109-127. DOI:10.1016/j.cja.2023.02.020.
[3]KANG C, WOOLSEY C A. Model-based path predic-tion for fixed-wing unmanned aircraft using pose esti-mates[J]. Aerospace Science and Technology, 2020, 105: 106030.
[4]袁修久, 赵学军, 李嘉林. 基于航迹的飞机姿态角建模与仿真[J]. 系统工程与电子技术, 2016, 38(04): 889-894.YUAN X J, ZHAO X J, LI J L. Modeling and simula-tion of aircraft attitude angle based on air-path[J]. Sys-tems Engineering and Electronics, 2016, 38(4): 889-894(in Chinese).
[5]孙博, 高永卫, 魏斌斌. 无人机离机轨迹与姿态的高准度快速预测方法研究[J]. 弹箭与制导学报, 2023, 43(06): 97-104.SUN B, GAO Y W, WEI B B. Research on a fast and precise prediction method for UAV separation trajecto-ry and attitude[J]. Journal of Projectiles, Rockets, Mis-siles and Guidance, 2023, 43(06): 97-104(in Chinese).
[6]李海泉, 陈小前, 张嘉图, 等. 随机激励作用下飞机飞行姿态动力学研究[J]. 航空学报, 2022, 43(03): 225232.LI H Q, CHEN X Q, ZHANG J T, et al. Study on air-craft attitude dynamics under random excitation[J]. Ac-ta Aeronautica et Astronautica Sinica, 2022, 43 (3): 225232 (in Chinese). DOI: 10.7527/S1000-6893.2021.25232.
[7]杨丽梅, 郭立红. 一种序列图像飞行器姿态的预测方法[J]. 计算机测量与控制, 2006, 14(06): 797-799.
YANG L M, GUO L H. Aircraft pose prediction meth-od of image sequences[J]. Computer Measurement & Control, 2006, 14(06): 797-799(in Chinese).
[8]PASHA A A, SANKARALINGAM L, RAHMAN M M, et al. MEMS fault-tolerant machine learning algo-rithm assisted attitude estimation for fixed-wing UAVs[J]. Engineering Applications of Artificial Intelli-gence, 2024, 129: 107608. DOI:10.1016/j.engappai.2023.107608.
[9]曹咏弘, 张慧, 马铁华, 等. 基于神经网络的无陀螺捷联惯导系统姿态预测[J]. 中国惯性技术学报, 2008, 16(02): 159-161+170.CAO Y H, ZHANG H, MA T H, et al. Attitude forecast of gyroscope-free SINS based on neural network[J]. Journal of Chinese Inertial Technology, 2008, 16(02): 159-161+170(in Chinese).
[10]梁少军, 郑幸, 谢礼鹏, 等. 固定翼无人机纵向控制回路多工况状态预测[J]. 兵器装备工程学报, 2020, 41(10): 203-209.LIANG S J, ZHENG X, XIE L P, et al. Muti-Condition state prediction of longitudinal control loop of fixed-wing UAV[J]. Journal of Ordnance Equipment Engi-neering, 2020, 41(10): 203-209(in Chinese).
[11]路晶, 史宇, 任洲. 基于增量式在线学习飞行训练姿态预测研究[J]. 航空计算技术, 2022, 52(5): 5-8.LU J, SHI Y, REN Z. Research on Attitude Prediction of Flight Training Based on Incremental Online Learn-ing [J]. Aeronautical Computing Technique, 2022, 52(5): 5-8(in Chinese).
[12]RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. DOI: 10.1016/j.jcp.2018.10.045.
[13]CAO W B, SONG J H, ZHANG W W. A solver for subsonic flow around airfoils based on physics-informed neural networks and mesh transformation[J]. Physics of Fluids, 2024, 36(2):027134. DOI: 10.1063/5.0188665.
[14]李野, 陈松灿. 基于物理信息的神经网络: 最新进展与展望[J]. 计算机科学, 2022, 49(4): 254?262.LI Y, CHEN S C. Physics-informed Neural Networks: Recent Advances and Prospects[J]. Computer Science, 2022, 49(4): 254?262(in Chinese).
[15]PANG G F, LU L, KARNIADAKIS G E. FPinns: Fractional physics informed neural networks[J]. SIAM Journal on Scientific Computing, 2019, 41(4): A2603-A2626. DOI:10.1137/18M1229845.
[16]HE G Y, ZHAO Y X, YAN C L. MFLP-PINN: A phys-ics-informed neural network for multiaxial fatigue life prediction[J]. European Journal of Mechanics - A/Solids, 2023,98:104889. DOI: 10.1016/j.euromechsol.2022.104889.
[17]BAI Z W, SONG S F. Physics-informed neural network for first-passage reliability assessment of structural dy-namic systems[J]. Computers & Structures, 2023,289:107189. DOI: 10.1016/j.compstruc.2023.107189.
[18]MOHAJERIN N, MOZIFIAN M, WASLANDER S. Deep learning a quadrotor dynamic model for multi-step prediction[C]. 2018 IEEE International Confer-ence on Robotics and Automation (ICRA), 2018, 2454-2459.
[19]GU W, PRIMATESTA S, RIZZO A. Physics-informed neural network for quadrotor dynamical modeling[J]. Robotics And Autonomous Systems, 2024, 171, 104569.
[20]王康晋. 基于PINN的细长体飞行器气动特性预测研究[D]. 绵阳: 西南科技大学, 2024.WANG K J, Research on predicting aerodynamic char-acteristics of slender aircraft based on PINN[D]. Mian yang: Southwest University of Science and Technology, 2024: 13-15 (in Chinese).
[21]付军泉, 钟伯文, 钟运琴, 等. 基于物理信息神经网络的飞机气动参数辨识方法[J]. 空气动力学学报, 2023, 41(09): 30-37.FU J Q, ZHONG B W, ZHONG Y Q, et al. A physics informed neural network based method for aircraft aer-odynamic parameter identification[J]. Acta Aerody-namica Sinica, 2023, 41(9): 30-37(in Chinese).
[22]方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005: 22-24, 174-181.FANG Z P, CHEN W C, ZHANG S G. Aerodynamic flight dynamics of aircraft[M]. Beijing: Beihang Uni-versity Press, 2005: 22-24, 174-181.
[23]金长江. 飞行动力学:飞机飞行性能计算[M]. 北京: 国防工业出版社, 1983: 29-34.JIN C J. Flight dynamics: aircraft flight performance calculation[M]. Beijing: National Defense Industry Press, 1983: 29-34.