六棱柱模块化可展开薄膜遮光罩设计与分析

  • 田大可 ,
  • 张立永 ,
  • 王永滨 ,
  • 方纪收 ,
  • 金路 ,
  • 刘荣强
展开
  • 1. 沈阳建筑大学
    2. 北京空间机电研究所
    3. 沈阳建筑大学土木工程学院
    4. 哈尔滨工业大学机电学院

收稿日期: 2025-01-02

  修回日期: 2025-06-07

  网络出版日期: 2025-06-27

基金资助

辽宁省自然科学基金面上项目;辽宁省教育厅基本科研项目;中国航天科技集团有限公司航天进入减速与着陆技术实验室开放课题;国家自然科学基金联合基金项目

Design and Analysis of Hexagonal Prism Modular Deployable Membrane Sunshield

  • TIAN Da-Ke ,
  • ZHANG Li-Yong ,
  • WANG Yong-Bin ,
  • FANG Ji-Shou ,
  • JIN Lu ,
  • LIU Rong-Qiang
Expand

Received date: 2025-01-02

  Revised date: 2025-06-07

  Online published: 2025-06-27

摘要

空间可展开遮光罩是抑制消除杂散光、防止外热流进入、提高光学系统成像质量的关键航天装备,是空间科学、深空探测等学术研究和实际应用的前沿与热点。针对探月、探火、星际探测等对大尺度、高收纳率遮光罩的迫切需求,提出一种可实现尺度灵活拓展的模块化可展开柱状遮光罩构型方案。首先,基于模块化思想,以Sarrus机构为基本构型开展了冗余驱动可展开支撑机构刚柔耦合多体系统设计,阐述了机构展收及锁定刚化机理,并采用空间几何坐标法分析了机构展开过程中关键节点的运动规律;其次,采用ABAQUS仿真软件建立了不同参数下单层可展开薄膜收拢态有限元模型,探究了不同参数对薄膜结构展开过程力学特性的影响规律,优选确定出最终设计参数,并开展了多层薄膜展开过程动力学仿真,分析了展开过程薄膜应力变化规律;再次,建立了遮光罩整体完全展开态有限元模型,开展了结构模态分析,研究了固有频率及振型变化规律;最后,研制了多模块遮光罩原理样机,并在微重力试验装置上对遮光罩进行了展开功能试验。研究结果表明:所设计的遮光罩能够有效实现展开与锁定功能,机构与薄膜展开过程协调、无干涉,验证了所提原理及方案的正确性。该研究可为同类航天器遮光罩的研究提供理论基础和技术参考。

本文引用格式

田大可 , 张立永 , 王永滨 , 方纪收 , 金路 , 刘荣强 . 六棱柱模块化可展开薄膜遮光罩设计与分析[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31749

Abstract

The deployable sunshield is a critical aerospace device for suppressing and eliminating stray light, preventing external heat flux intrusion, and improving the imaging quality of optical systems. It is a forefront and hotspot in academic research and practical applications in space science and deep space exploration. To address the urgent demands for large-scale, high-storage-ratio sunshields in lunar exploration, Mars exploration, and interstellar missions, a modular scalable cylindrical sunshield configuration is proposed. Firstly, based on the modular concept, a redundantly driven deployable support mechanism with a rigid-flexible coupled multibody system is developed using the Sarrus mechanism as the fundamental configuration. The deployment, retraction, locking, and stiffening mechanisms of the structure are explained, and the spatial geometric coordinate method is employed to analyze the motion patterns of key nodes during the deployment process. Secondly, finite element models of single-layer folded membranes under various parameters are established using ABAQUS to investigate parameter effects on mechanical behavior during deployment. Optimal design parameters are determined through comparative analysis, followed by dynamic simulations of multilayer membrane deployment processes to characterize stress evolution patterns. Thirdly, a finite-element model of the fully deployed state of the entire sunshield is established, and a structural modal analysis is carried out to analyze the variation laws of the natural frequency and vibration mode. Finally, a multi-module sunshield prototype is developed, and deployment functionality tests are conducted on a microgravity test platform. The results show that the designed sunshield effectively achieves deployment and locking functions, with coordinated and interference-free deployment of the mechanism and membrane, thereby verifying the correctness of the proposed principle and design. This study provides a theoretical foundation and technical reference for research on similar spacecraft sunshields.

参考文献

[1] 中华人民共和国中央人民政府 2021中国的航天[EB/OL].(2022-1-28)[2024-12-20].https://www.gov.cn/zhengce/202201/28/content_5670920. htm.
The Central People's Government of the People's Republic of China China's Space Program: A 2021 Perspective[EB/OL]. (2022-1-28) [2024-12-20]. https://www.gov.cn/zhengce/202201/28/content_5670920. htm. (in Chinese).
[2] 田百义, 王大轶, 张相宇, 等. 太阳系边际探测飞行任务规划[J]. 宇航学报, 2021, 42(3): 284-294.
TIAN B Y, WANG D Y, ZHANG X Y, et al. Solar system marginal exploration mission planning[J]. Journal of Astronautics, 2021, 42(3): 284-294. (in Chinese).
[3] 刘志全, 操安博, 林秋红. 航天器可展开薄膜遮光罩机械设计的发展与展望[J]. 宇航学报, 2022, 43(7) 839-852.
LIU Z Q, CAO A B, LIN Q H. Development and outlook of deployable membrane sunshield for spacecrafts[J]. Journal of Astronautics, 2022, 43(7): 839-852 (in Chinese).
[4] 刘付成, 朱东方. 考虑连接非线性的大型桁架天线分散协调控制[J]. 航空学报, 2021, 42(11): 139-149.
LIU F C, ZHU D F. Considering the decentralized coordinated control of large truss antennas with nonlinear connection [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 139-149. (in Chinese).
[5] 仝照远, 李萌, 崔程博, 等. 空间可展开薄膜遮光罩设计与分析[J]. 中国空间科学技术, 2021, 41(3): 82-88.
TONG Z Y. LI M, CUI C B, et al. Design and analysis of the configuration of deployable membrance sunshield[J]. Chinese Space Science and Technology, 2021, 41(3): 82-88 (in Chinese).
[6] 徐彦, 张超, 李鸿巍, 等. 展开式薄膜遮光罩设计及重复展开精度研究[J]. 中国空间科学技术, 2022, 42(4): 102-110.
XU Y, ZHANG C, LI H W, et al. Study on design and repetitive deployment precision of deployable membrane sunshields[J]. Chinese Space Science and Technology, 2022, 42(4): 102-110 (in Chinese).
[7] 林秋红, 张骞, 贾文文, 等. 大型空间薄膜遮阳罩折展构型设计与分析[J]. 机械工程学报, 2020, 56(5): 13-20.
LIN Q H, ZHANG Q, JIA W W, et al. Deployable configuration design and analysis of large space membrane sunshield structures[J]. Journal of Mechanical Engineering, 2020, 56(5): 13-20 (in Chinese).
[8] ROBINSON D W, MCCLELLAND R S. Mechanical overview of the International Xray Observatory [C]//2009 IEEE Aerospace conference. Big Sky, USA: IEEE, 2009: 1-10.
[9] WILSON L, PELLEGRINO S, DANNER R. Origami sunshield concepts for space telescopes[C]//54th AIAA/ASME/ASCE/AHS/ASC structures, Structural dynamics, and Materials Conference, Boston, USA: AIAA, 2013: 1594.
[10] GARDI R, PICA G. Realization and preliminary tests on aninnovative deployable structure for a high-resolution telescope for microsatel-lite[C]//Sensors, Systems, and Next-GenerationSatellites Vll, International Society for Optics and Photonics, Maspalomas Islands, Spain: SPIE, 2004: 411-422.
[11] PICA G, CIOFANIELLO L, MATTEI S, et al. High-resolution deployable telescope for satellite applications [C]//Sensors, Systems, and Next-Generation Satellites Vl, Barcelona, Spain: SPIE, 2004: 531-538.
[12] WARREN P A, SILVER M J,DOBSON B J. Lightweight optical barrel assembly structures for large deployable space telescopes[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2009: 104-111.
[13] AGASID E, ENNICO-SMITH K, RADEMACHE A. Collapsible space telescope(CST) for nanosatellite imaging and observation[C]//27th AnnuaI AIAA/USUConference on Small Satellites, Utah USA, 2013: 1-5.
[14] PEREIRA C, URGOITI E, PINTO I. The structure of the gaia deployable sunshield assembly[C]//The 12th European Conference on Spacecraft Structures, Materials and Environmental Testing, Noordwijk, The Netherlands, 2012: 691.
[15] WEBB D, HIRSCH B, BACH V, et al. Starshade mechanical architecture & technology effort[C]//3rd AIAA Spacecraft Structures Conference, San Diego, USA: AIAA, 2016: 2165.
[16] SIGEL D, TREASE B P, THOMSON M W, et al. Application of origami in the starshade spacecraft blanket design[C]//International Design Engineering Technical Confer-ences and Computersand Information in Engineeringc Conference, New York, USA: ASME, 2014: 33.
[17] WILLIAMS R B, AGNES G, CRUMB D. Lightweight deployable sunshade concepts for passive cooling of space-Based telescopes[C]//49th AIAA/ASME/ASCE/AHS/ASC Stuctures, Struetural Dynamics, and Materials Conference, Schaumburg, USA: AIAA, 2008: 1774.
[18] GREENHOUSE M A. The JWST science instrumentpayload: mission context and status[C]//Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. International Society for Optics and Photonics, Edinburgh, UK, 2016: 9143.
[19] MICHAEL D, KIRK A, BERNARD K, et al. Design and development of an in-space deployable sunshield for the atlas centaur[C]//AIAA Space 2008 Conference & Exposition.SanDiego: AIAA, 2008: 7764.
[20] DIPIRRO M, TUTTLE J, MATTERN A, et al. Subscale cryo-thermal tests of a large 4K space telescope[J]. Proceedings of the SPIE, 2006: 112-122.
[21] 曹旭, 江长虹, 冯昊, 等. “高分七号”卫星遥感相机可展开遮光罩的设计和实现[J]. 航天返回与遥感, 2020, 41(2): 67-77.
CAO X, JIANG C H, FENG H, et al. Design and implementation of the deployable sunshield on GF-7satellite remote sensing camera[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(2): 67-77 (in Chinese).
[22] 徐彦, 张超, 李鸿巍, 等. 展开式薄膜遮光罩设计及重复展开精度研究[J]. 中国空间科学技术, 2022, 42(4): 102-110.
XU Y, ZHANG C, LI H W, et al. Study on design and repetitive deployment precision of deployable membrane sunshields[J]. Chinese Space Science and Technology, 2022, 42(4): 102-110 (in Chinese).
[23] 杜凯. 光学系统弹出式遮光罩研究[D]. 成都: 中国科学院研究生院(光电技术研究所), 2014.
DU K. Self-deployable sunshield in the optical system[D]. Chengdu: University of Chinese Academy of Sciences, 2014. (in Chinese).
[24]KUANG Y, WANG S, GAO Y, et al. Design and preliminary ground experiment for deployable sunshade structures of a modular space telescope[J]. Sensors, 2024, 24(7): 2280.
[25] 杜洋, 张祎, 段晓闻, 等. 土星系探测任务进展与展望[J]. 上海航天(中英文), 2024, 41(5): 69-78.
DU Y, ZHANG Y, DUAN X W, et al. Advances and prospect of saturnian system exploration missions[J]. Aerospace Shanghai(Chinese & English), 2024, 41(5): 69-78 (in Chinese).
[26] TIAN D K, ZHANG J W, JIN L, et al. Design and research of a new multi-loop closed-chain morphing wing mechanism[J]. Mechanism and Machine Theory, 2024, 199: 105697.
[27] TIAN D K, YANG X H, JIN L, et al. Design and analysis of a solid surface deployable antenna mechanism based on flasher rigid origami[J]. Thin-Walled Structures, 2024, 201: 112033.
[28] 田大可, 高海明, 金路, 等. 多构型组合式模块化可展开天线机构设计与分析[J]. 机械工程学报, 2023, 59(13): 36-48.
TIAN D K, GAO H M, JIN L, et al. Design and anal-ysis of multi-configuration modular deployable an-tenna mechanism[J]. Journal of Mechanical Engi-neering, 2023, 59 (13): 36-48 (in Chinese).
[29] 张骞, 蔡建国, 丁一凡, 等. 薄膜反射面结构新型折展方案设计[J]. 航空学报, 2018, 39(S1): 60-68.
ZHANG Q, CAI J G, DING Y F, et al. Design of fold-development program for film reflective surface structures[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(S1): 60-68 (in Chinese).
文章导航

/