六棱柱模块化可展开薄膜遮光罩设计与分析
收稿日期: 2024-12-31
修回日期: 2025-02-06
录用日期: 2025-05-26
网络出版日期: 2025-06-27
基金资助
国家自然科学基金联合基金(U2341237);中国航天科技集团有限公司航天进入减速与着陆技术实验室开放课题(EDL19092302);辽宁省教育厅基本科研项目(LJ222410153096);辽宁省教育厅基本科研项目(JYTMS20231592)
Design and analysis of hexagonal prism modular deployable membrane sunshield
Received date: 2024-12-31
Revised date: 2025-02-06
Accepted date: 2025-05-26
Online published: 2025-06-27
Supported by
Joint Funds of the National Natural Science Foundation of China(U2341237);Open Project of Laboratory of Aerospace Entry, Descent and Landing Technology of China Aerospace Science and Technology Corporation(EDL19092302);Foundation of Educational Department of Liaoning Province(LJ222410153096)
空间可展开遮光罩是抑制消除杂散光、防止外热流进入、提高光学系统成像质量的关键航天装备,是空间科学、深空探测等学术研究和实际应用的前沿与热点。针对探月、探火、星际探测等对大尺度、高收纳率遮光罩的迫切需求,提出一种可实现尺度灵活拓展的模块化可展开柱状遮光罩构型方案。首先,基于模块化思想,以Sarrus机构为基本构型开展了冗余驱动可展开支撑机构刚柔耦合多体系统设计,阐述了机构展收及锁定刚化机理,并采用空间几何坐标法分析了机构展开过程中关键节点的运动规律;其次,采用ABAQUS仿真软件建立了不同参数下单层可展开薄膜收拢态有限元模型,探究了不同参数对薄膜结构展开过程力学特性的影响规律,优选确定出最终设计参数,并开展了多层薄膜展开过程动力学仿真,分析了展开过程薄膜应力变化规律;再次,建立了遮光罩整体完全展开态有限元模型,开展了结构模态分析,研究了固有频率及振型变化规律;最后,研制了多模块遮光罩原理样机,并在微重力试验装置上对遮光罩进行了展开功能试验。研究结果表明:所设计的遮光罩能够有效实现展开与锁定功能,机构与薄膜展开过程协调、无干涉,验证了所提原理及方案的正确性。该研究可为同类航天器遮光罩的研究提供理论基础和技术参考。
关键词: 模块化结构; 薄膜遮光罩; 运动学分析; Kresling折纸; 结构设计
田大可 , 张立永 , 王永滨 , 方纪收 , 金路 , 刘荣强 . 六棱柱模块化可展开薄膜遮光罩设计与分析[J]. 航空学报, 2025 , 46(18) : 431749 -431749 . DOI: 10.7527/S1000-6893.2025.31749
The deployable sunshield is a critical aerospace device for suppressing and eliminating stray light, preventing external heat flux intrusion, and improving the imaging quality of optical systems. It is a forefront and hotspot in academic research and practical applications in space science and deep space exploration. To address the urgent demands for large-scale, high-storage-ratio sunshields in lunar exploration, Mars exploration, and interstellar missions, a modular scalable cylindrical sunshield configuration is proposed. Firstly, based on the modular concept, a redundantly driven deployable support mechanism with a rigid-flexible coupled multibody system is developed using the Sarrus mechanism as the fundamental configuration. The deployment, retraction, locking, and stiffening mechanisms of the structure are explained, and the spatial geometric coordinate method is employed to analyze the motion patterns of key nodes during the deployment process. Secondly, finite element models of single-layer folded membranes under various parameters are established using ABAQUS to investigate parameter effects on mechanical behavior during deployment. Optimal design parameters are determined through comparative analysis, followed by dynamic simulations of multilayer membrane deployment processes to characterize stress evolution patterns. Thirdly, a finite-element model of the fully deployed state of the entire sunshield is established, and a structural modal analysis is conducted to analyze the variation laws of the natural frequency and vibration mode. Finally, a multi-module sunshield prototype is developed, and deployment functionality tests are conducted on a microgravity test platform. The results show that the designed sunshield effectively achieves deployment and locking functions, with coordinated and interference-free deployment of the mechanism and membrane, thereby verifying the correctness of the proposed principle and design. This study provides a theoretical foundation and technical reference for research on similar spacecraft sunshields.
| [1] | 中华人民共和国国务院新闻办公室. 2021中国的航天[EB/OL]. (2022-01-28)[2024-12-20]. . |
| The State Council Information Office of the People’s Republic of China. China’s space program: A 2021 perspective[EB/OL]. (2022-01-28)[2024-12-20]. (in Chinese). | |
| [2] | 田百义, 王大轶, 张相宇, 等. 太阳系边际探测飞行任务规划[J]. 宇航学报, 2021, 42(3): 284-294. |
| TIAN B Y, WANG D Y, ZHANG X Y, et al. Flight mission planning for solar system boundary exploration[J]. Journal of Astronautics, 2021, 42(3): 284-294 (in Chinese). | |
| [3] | 刘志全, 操安博, 林秋红. 航天器可展开薄膜遮光罩机械设计的发展与展望[J]. 宇航学报, 2022, 43(7): 839-852. |
| LIU Z Q, CAO A B, LIN Q H. Development and outlook of deployable membrane sunshield for spacecrafts[J]. Journal of Astronautics, 2022, 43(7): 839-852 (in Chinese). | |
| [4] | 刘付成, 朱东方. 考虑连接非线性的大型桁架天线分散协调控制[J]. 航空学报, 2021, 42(11): 139-149. |
| LIU F C, ZHU D F. Distributed coordinated control for large flexible truss antenna considering connection nonlinearity[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 139-149 (in Chinese). | |
| [5] | 仝照远, 李萌, 崔程博, 等. 空间可展开薄膜遮光罩设计与分析[J]. 中国空间科学技术, 2021, 41(3): 82-88. |
| TONG Z Y, LI M, CUI C B, et al. Design and analysis of the configuration of deployable membrane sunshield[J]. Chinese Space Science and Technology, 2021, 41(3): 82-88 (in Chinese). | |
| [6] | 徐彦, 张超, 李鸿巍, 等. 展开式薄膜遮光罩设计及重复展开精度研究[J]. 中国空间科学技术, 2022, 42(4): 102-110. |
| XU Y, ZHANG C, LI H W, et al. Study on design and repetitive deployment precision of deployable membrane sunshields[J]. Chinese Space Science and Technology, 2022, 42(4): 102-110 (in Chinese). | |
| [7] | 林秋红, 张骞, 贾文文, 等. 大型空间薄膜遮阳罩折展构型设计与分析[J]. 机械工程学报, 2020, 56(5): 13-20. |
| LIN Q H, ZHANG Q, JIA W W, et al. Deployable configuration design and analysis of large space membrane sunshield structures[J]. Journal of Mechanical Engineering, 2020, 56(5): 13-20 (in Chinese). | |
| [8] | ROBINSON D W, MCCLELLAND R S. Mechanical overview of the International X-ray Observatory[C]∥2009 IEEE Aerospace Conference. 2009: 1-10. |
| [9] | WILSON L, PELLEGRINO S, DANNER R. Origami sunshield concepts for space telescopes[C]∥54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2013: 1-12. |
| [10] | GARDI R, PICA G. Realization and preliminary tests on an innovative deployable structure for a high-resolution telescope for microsatellite[C]∥Sensors, Systems, and Next-Generation Satellites Ⅷ. 2004: 411-422. |
| [11] | PICA G, CIOFANIELLO L, MATTEI S, et al. High-resolution deployable telescope for satellite applications[C]∥Sensors, Systems, and Next-Generation Satellites Ⅶ. 2004: 531-538. |
| [12] | WARREN P A, SILVER M J, DOBSON B J. Lightweight optical barrel assembly structures for large deployable space telescopes[C]∥UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts Ⅳ. 2009: 104-111. |
| [13] | AGASID E, ENNICO-SMITH K, RADEMACHER A. Collapsible space telescope(CST) for nanosatellite imaging and observation[C]∥27th Annual AIAA/USU Conference on Small Satellites. 2013: 1-5. |
| [14] | PEREIRA C, URGOITI E, PINTO I. The structure of the Gaia deployable sunshield assembly[C]∥12th European Conference on Spacecraft Structures, Materials and Environmental Testing. 2012: 1-6. |
| [15] | WEBB D, HIRSCH B, BACH V, et al. Starshade mechanical architecture & technology effort[C]∥3rd AIAA Spacecraft Structures Conference. 2016: 1-10. |
| [16] | SIGEL D, TREASE B P, THOMSON M W, et al. Application of origami in the starshade spacecraft blanket design[C]∥International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2014: 1-8. |
| [17] | WILLIAMS R B, AGNES G, CRUMB D. Lightweight deployable sunshade concepts for passive cooling of space-based telescopes[C]∥49th AIAA/AS-ME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2008: 1-8. |
| [18] | GREENHOUSE M A. The JWST science instrument payload: mission context and status[C]∥Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. 2016: 20-32. |
| [19] | MICHAEL D, JOHN L, BERNARD K, et al. Design and development of an in-space deployable sun shield for the atlas centaur[C]∥AIAA Space 2008 Conference & Exposition. 2008: 1-11. |
| [20] | DIPIRRO M, TUTTLE J, MATTERN A, et al. Subscale cryo-thermal tests of a large 4-K space telescope[C]∥Millimeter and Submillimeter Detectors and Instrumentation for Astronomy Ⅲ. 2006: 112-122. |
| [21] | 曹旭, 江长虹, 冯昊, 等. “高分七号”卫星遥感相机可展开遮光罩的设计和实现[J]. 航天返回与遥感, 2020, 41(2): 67-77. |
| CAO X, JIANG C H, FENG H, et al. Design and implementation of the deployable sunshield on GF-7 satellite remote sensing camera[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(2): 67-77 (in Chinese). | |
| [22] | 杜凯. 光学系统弹出式遮光罩研究[D]. 成都: 中国科学院大学, 2014: 15-48. |
| DU K. Self-deployable baffle in the optical system[D]. Chengdu: University of Chinese Academy of Sciences, 2014: 15-48 (in Chinese). | |
| [23] | KUANG Y, WANG S H, GAO Y, et al. Design and preliminary ground experiment for deployable sunshade structures of a modular space telescope[J]. Sensors, 2024, 24(7): 1-16. |
| [24] | 杜洋, 张祎, 段晓闻, 等. 土星系探测任务进展与展望[J]. 上海航天, 2024, 41(5): 69-78. |
| DU Y, ZHANG Y, DUAN X W, et al. Advances and prospect of saturnian system exploration missions[J]. Aerospace Shanghai, 2024, 41(5): 69-78 (in Chinese). | |
| [25] | TIAN D K, ZHANG J W, JIN L, et al. Design and research of a new multi-loop closed-chain morphing wing mechanism[J]. Mechanism and Machine Theory, 2024, 199: 105679. |
| [26] | TIAN D K, YANG X H, JIN L, et al. Design and analysis of a solid surface deployable antenna mechanism based on flasher rigid origami[J]. Thin-Walled Structures, 2024, 201: 112033. |
| [27] | 田大可, 高海明, 金路, 等. 多构型组合式模块化可展开天线机构设计与分析[J]. 机械工程学报, 2023, 59(13): 36-48. |
| TIAN D K, GAO H M, JIN L, et al. Design and analysis of multi-configuration modular deployable antenna mechanism[J]. Journal of Mechanical Engineering, 2023, 59(13): 36-48 (in Chinese). | |
| [28] | CAI J G, DENG X W, ZHOU Y, et al. Bistable behavior of the cylindrical origami structure with Kresling pattern[J]. Journal of Mechanical Design, 2015, 137(6): 061406. |
| [29] | CAI J G, DENG X W, ZHANG Y T, et al. Folding behavior of a foldable prismatic mast with Kresling origami pattern[J]. Journal of Mechanisms and Robotics, 2016, 8(3): 031004. |
| [30] | 张骞, 蔡建国, 丁一凡, 等. 薄膜反射面结构新型折展方案设计[J]. 航空学报, 2018, 39(S1): 60-68. |
| ZHANG Q, CAI J G, DING Y F, et al. Design of fold-development program for film reflective surface structures[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(S1): 60-68 (in Chinese). | |
| [31] | 史创, 郭宏伟, 刘荣强, 等. 双层环形可展开天线机构设计与力学分析[J]. 哈尔滨工业大学学报, 2017, 49(1): 14-20. |
| SHI C, GUO H W, LIU R Q, et al. Mechanism design and mechanical analysis of a double-layer loop deployable antenna[J]. Journal of Harbin Institute of Technology, 2017, 49(1): 14-20 (in Chinese). | |
| [32] | 曹鹏. 大型空间薄膜可展开天线结构创新设计[D]. 西安: 西安电子科技大学, 2018: 49-54. |
| CAO P. Innovative structure design of large space deployable membrane antenna[D]. Xi’an: Xidian University, 2018: 49-54 (in Chinese). | |
| [33] | JIN L, LI B H, TIAN D K, et al. Impact dynamic response of large aperture space deployable antenna supporting structures based on a dual-scale model[J]. Thin-Walled Structures, 2024, 195: 111432. |
| [34] | 戴宇航, 蒋松, 陈金宝, 等. 大型星载天线桁架式可折展机构的模态分析[J]. 上海航天, 2019, 36(1): 97-101. |
| DAI Y H, JIANG S, CHEN J B, et al. Modal analysis of truss deployment mechanism for large satellite antenna[J]. Aerospace Shanghai, 2019, 36(1): 97-101 (in Chinese). | |
| [35] | TIAN D K, GUO Z W, JIN L, et al. Design and mechanical characteristics of support structure for modular deployable antenna[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2023, 40(1): 80-97. |
| [36] | 匡也. 面向在轨组装空间望远镜遮光罩的折叠与展开技术研究[D]. 长春: 中国科学院大学, 2024: 92-103. |
| KUANG Y. Research on folding and unfolding technology of orbit assembling space telescope sunshade[D]. Changchun: University of Chinese Academy of Sciences, 2024: 92-103 (in Chinese). |
/
| 〈 |
|
〉 |