上层大气层长期飞行的力学原理和概念方案

  • 靳旭红 ,
  • 李子玮 ,
  • 石伟龙 ,
  • 刘奕豪
展开
  • 中国航天空气动力技术研究院

收稿日期: 2025-04-24

  修回日期: 2025-06-18

  网络出版日期: 2025-06-20

基金资助

稳定支持

Mechanic principle and concept scheme for flying in the upper atmosphere for a long time

  • JIN Xu-Hong ,
  • LI Zi-Wei ,
  • SHI Wei-Long ,
  • LIU Yi-Hao
Expand

Received date: 2025-04-24

  Revised date: 2025-06-18

  Online published: 2025-06-20

摘要

针对目前尚无飞行器在上层大气层长期飞行的问题,叙述了上层大气层长期飞行的力学原理,从气动/推进一体化设计的角度构建了初步气动构型,采用直接模拟Monte Carlo (direct simulation Monte Carlo, DSMC) 方法对该构型的气动阻力和进气道性能进行了评估,提出了该构型在上层大气层长期飞行的概念方案,分析和讨论了该方案在有限太阳能供应条件下达到推力和阻力平衡的可行性。上层大气层飞行器初步构型由飞行器本体、前掠太阳能电池翼和吸气式电推进系统内凹型进气道组成,前掠翼设计能提升进气道的收集性能。所设计的气动构型在海拔180 km高度以7760 m/s飞行时,在一定假设条件下,吸气式电推进系统产生的推力等于飞行器总阻力,具备长期飞行的能力。气固相互作用 (gas-surface interaction, GSI) 适应系数的降低不但能降低飞行器的阻力,还能提升进气道的气体收集和压缩性能,因此能同时降低推阻平衡对电离效率和推功比的要求。如果能够获得较高的推功比,可以采用小面积太阳翼设计,降低推阻平衡对电离效率的要求。如果能够获得较高的电离效率,可以采用大面积太阳翼设计,降低推阻平衡对推功比的要求。通过飞行器表面材料设计或光滑处理降低GSI适应系数,发展上层大气组分高效的电离和加速技术,提高电离效率和推功比,是实现推阻平衡和长期飞行的有效手段。

本文引用格式

靳旭红 , 李子玮 , 石伟龙 , 刘奕豪 . 上层大气层长期飞行的力学原理和概念方案[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32158

Abstract

In order to achieve a long-time flight in the upper atmosphere, the mechanic principle for flying in the upper atmosphere for a long time is described and a preliminary configuration, which takes into account the aerodynamic and propulsion aspects simultaneously, is designed. After evaluating the aerodynamic drags and inlet performances, a concept scheme is devised and the feasibility of the thrust-drag balance subjected to a limited supply of solar power is analyzed. The aer-odynamic configuration is composed of the body, the sweep-forward solar panel, and the concave inlet of an atmosphere-breathing electric propulsion (ABEP) system. Flow characteristics from numerical calculations indicate that the sweep-forward design of solar panel can enhance the collection performance of the inlet. Under some assumptions, the ABEP is able to produce the thrust, which can cancel the total drag of the configuration designed here, proving its ability of flying at an altitude of 180 km at 7760 m/s. Decreasing the accommodation coefficient in the gas-surface interaction (GSI) can not only reduce the total drag but also enhance the collection and compression performances of the inlet, thus relaxing the requirement for the ionization efficiency and thrust-to-power ratio in order to acquire the thrust-drag balance. If a larger thrust-to-power ratio can be obtained, a solar panel with a smaller area can be employed to relieve the demand for the ionization efficiency, and if a higher ionization efficiency can be obtained, a solar panel with a larger area can be utilized to alleviate the requirement for the thrust-to-power ratio. In the future, the effective methods to achieve thrust-drag balance and long-time flight in the upper atmosphere are reducing the GSI accommodation coefficient by means of designing or smoothing the aircraft surface material and increasing the ionization efficiency and thrust-to-power ratio by developing efficient ionization and acceleration technology.

参考文献

[1] 沈清, 黄飞, 程晓丽, 等. 飞行器上层大气层空气动力特性探讨 [J]. 气体物理, 2021, 6(1): 1-9.
SHEN Q, HUANG F, CHENG X L, et al. On charac-teristics of upper atmosphere aerodynamics of flying vehicles [J]. Physics of Gases, 2021, 6(1): 1-9. (in Chinese)
[2] CHEN Z, HUANG F, JIN X H, et al. A novel light-weight aerodynamic design for the wings of hyper-sonic vehicles cruising in the upper atmosphere [J]. Aerospace Science and Technology, 2020, 109: 106418.
[3] PRIETO D M, GRAZIANO B P, ROBERTS P. Space-craft drag modelling [J]. Progress in Aerospace Sci-ences, 2014, 64:56-65.
[4] CRISP N H, ROBERTS P, LIVADIOTTI S, et al. The benefits of very low earth orbit for earth observation missions [J]. Progress in Aerospace Sciences, 2020, 117: 100619.
[5] 靳旭红,黄飞,张俊,等.上层大气层飞行器研究进展及气动技术挑战[J].航空学报, 2024, 46(22): 030254.
JIN X H, HUANG F, ZHANG J, et al. Spacecraft in the upper atmosphere: research development and aer-odynamic challenges [J]. Acta Aeronautica et Astro-nautica Sinica, 2024, 46(1): 130254. (in Chinese)
[6] CRISP N H, ROBERTS P, LIVADIOTTI S, et al. In-orbit aerodynamic coefficient measurements using SOAR (Satellite for Orbital Aerodynamics Research) [J]. Acta Astronautica, 2021, 180: 85-99.
[7] 苏鹏辉, 刘奕豪, 靳旭红,等. 吸气式电推进系统进气道性能数值研究与可行性分析 [J]. 航空学报, 2025, 46: 131569.
SU P H, LIU Y H, JIN X H, et al. Numerical investi-gation of inlet performance and feasibility analysis of an atmosphere-breathing electric propulsion system [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46: 131569. (in Chinese)
[8] LIVADIOTTI S, CRISP N H, ROBERTS P C E, et al. A review of gas-surface interaction models for orbital aerodynamics applications [J]. Progress in Aerospace Sciences, 2020, 119: 100675.
[9] PADILLA J F, BOYD I D. Assessment of gas–surface interaction models for computation of rarefied hyper-sonic flow [J]. Journal of Thermophysics and Heat Transfer, 2009, 23 (1): 96–105.
[10] LIANG T F, LI Q, YE W J. Performance evaluation of Maxwell and Cercignani-Lampis gas-wall interaction models in the modeling of thermally driven rarefied gas transport [J]. Physical Review E, 2013, 88: 013009.
[11] DENG J C, ZHANG J, LIANG T F, et al. A modified Cercignani–Lampis model with independent momen-tum and thermal accommodation coefficients for gas molecules scattering on surfaces [J]. Phys. Fluids, 2022, 34: 107108.
[12] JIN X H, CHENG X L, HUANG Y Q, et al. Numerical analysis of inlet flows at different altitudes in the up-per atmosphere [J]. Physics of Fluids, 2023, 35: 093605.
[13] 陶瑞灵, 王智慧. 上层大气层气固相互作用的分子动力学研究 [J]. 力学学报, 2025, 57(1): 65-78.
TAO R L, WANG Z H. Molecular dynamics study of gas-surface interactions in upper atmosphere [J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 65-78.
[14] NISHIYAMA K. Air breathing ion engine concept [C]// Proceedings of 54th International Astronautical Congress of the International Astronautical Federation. Reston: AIAA, 2003: 1-8.
[15] ANDREUSSI T, FERRATO E, PAISSONI C A, et al. The AETHER project: development of air-breathing electric propulsion for VLEO missions [J]. CEAS Space Journal, 2022, 14: 717–740.
[16] SINGH L A, WALKER M L R. A review of research in low earth orbit propellant collection [J]. Progress in Aerospace Sciences, 2015, 75: 15-25.
[17] TAGAWA M, YOKOTA K, NISHIYAMA K, et al. Experimental study of air breathing ion engine using laser detonation beam source [J]. Journal of Propul-sion and Power, 2013, 2(3): 501-506.
[18] ROMANO F, ESPINOSA-OROZCO J, PFEIFFER M, et al. Intake design for an Atmosphere-Breathing Electric Propulsion System (ABEP) [J]. Acta Astro-nautica, 2021, 187: 225-235.
[19] JACKSON S W, MARSHALL R. Conceptual design of an air-breathing electric thruster for CubeSat appli-cations [J]. Journal of Spacecraft and Rockets, 2018, 55: 632-639.
[20] LI Y, CHEN X, LI D, et al. Design and analysis of vacuum air-intake device used in air-breathing elec-tric propulsion [J]. Vacuum, 2015, 120: 89-95.
[21] WU J, ZHENG P, ZHANG Y, et al. Recent develop-ment of intake devices for atmosphere-breathing elec-tric propulsion system [J]. Progress in Aerospace Sci-ences, 2022, 133: 100848.
[22] JIN X H, SU P H, CHEN Z, et al. Numerical and ex-perimental investigation of rarefied hypersonic flow in a nozzle [J]. Physics of Fluids, 2024, 36: 116131.
[23] JIN X H, MIAO W B, CHENG X L, et al. Monte Car-lo simulation of inlet flows in atmosphere-breathing electric propulsion [J]. AIAA Journal, 2024, 62(2): 518-529.
[24] 靳旭红, 程晓丽, 沈清, 等. 吸气式电推进系统进气道气体流动数值分析 [J]. 中国科学: 物理学 力学 天文学, 2024, 54(3): 234712.
JIN X H, CHENG X L, SHEN Q, et al. Numerical analysis of inlet flows in an atmosphere-breathing electric propulsion system [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2024, 54(3): 234712. (in Chinese)
[25] 周靖云, 靳旭红, 程晓丽, 等. 气固相互作用对吸气式电推进系统进气道性能的影响研究. 清华大学学报 (自然科学版), 2024, 64(9): 1536-1546.
[26] JIN X H, CHENG X L, HUANG Y Q, et al. Numerical analysis of inlet flows in atmosphere-breathing elec-tric propulsion systems with different sizes [J]. Aero-space Science and Technology, 2025, 158: 109897.
[27] 张俊, 蒋亦凡, 陈松, 等. 超低轨卫星气动阻力计算与减阻设计研究综述 [J]. 航空学报, 2024, 45(21): 029796.
ZHANG J, JIANG Y F, CHEN S, et al. Overview of aerodynamic drag calculation and reduction design for very low Earth orbit satellites [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 029796. (in Chinese)
[28] 李俊红, 黄飞, 靳旭红, 等. 上层大气层飞行器气动布局优化设计 [J]. 航空学报, 2024, 45(22): 130164.
LI J H, HUANG F, JIN X H, et al. Aerodynamic lay-out optimization design of upper atmosphere aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 130164. (in Chinese)
[29] 靳旭红, 黄飞, 程晓丽, 等. 超低轨航天器气动特性快速预测的试验粒子Monte Carlo方法 [J]. 航空学报, 2017, 38(5): 120625.
JIN X H, HUANG F, CHENG X L, et al. Test particle Monte Carlo method for rapid prediction of aerody-namic properties of spacecraft in lower LEO [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120625. (in Chinese)
[30] JIN X H, HUANG F, CHENG X L, et al. Monte Carlo simulation for aerodynamic coefficients of satellites in Low-Earth Orbit [J]. Acta Astronautica, 2019, 160: 222-229.
[31] BIRD G A. Approach to translational equilibrium in a rigid sphere gas [J]. Physics of Fluids, 1963, 6: 1518–1519.
[32] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows [M]. New York: Oxford Uni-versity Press, 1994: 340–346.
[33] BIRD G A. Monte Carlo simulation of gas flows [J]. Annual Review of Fluid Mechanics, 1978, 10(8): 11–31.
[34] PLIMPTON S J, MOORE S G, BORNER A, et al. Direct simulation Monte Carlo on petaflop super-computers and beyond [J]. Physics of Fluids, 2019, 31: 086101.
[35] BORGNAKKE C, LARSEN P S. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture [J]. Journal of Computational Physics, 1975, 18(4): 405–420.
[36] JIN X H, HUANG F, MIAO W B, et al. Effects of the boundary-layer thickness at the cavity entrance on rarefied hypersonic flows over a rectangular cavity [J]. Physics of Fluids, 2021, 33: 036116.
[37] JIN X H, CHENG X L, WANG Q, et al. Numerical analysis of rarefied hypersonic flows over inclined cavities [J]. International Journal of Heat and Mass Transfer, 2023, 214: 124401.
[38] GALLIS M A, KOEHLER T P, TORCZYNSKI J R, et al. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability [J]. Physics of Fluids, 2015, 27: 084105.
[39] GALLIS M A, BITTER N P, KOEHLER T P, et al. Molecular-level simulations of turbulence and its de-cay [J]. Phys Rev Lett, 2017, 118: 064501.
[40] Leomanni M, Garulli A, Giannitrapani A, et al. Pro-pulsion options for very low Earth orbit microsatel-lites [J]. Acta Astronautica, 2017, 133: 444–454.
[41] ANDREUSSI T, FERRATO E, GIANNETTI V. A re-view of air?breathing electric propulsion: from mis-sion studies to technology verification [J]. Journal of Electric Propulsion, 2022, 1:31.
[42] GARRIGUES L. Computational study of Hall-effect thruster with ambient atmospheric gas as propellant [J]. Journal of Propulsion and Power, 2012, 28: 344-354.
[43] GURCIULLO A, FABRIS A L, CAPPELLI M A. Ion plume investigation of a Hall effect thruster operating with Xe/N2 and Xe/air mixtures [J]. J Phys D Appl Phys, 2019, 52(46).
文章导航

/