[1] 沈清, 黄飞, 程晓丽, 等. 飞行器上层大气层空气动力特性探讨 [J]. 气体物理, 2021, 6(1): 1-9.
SHEN Q, HUANG F, CHENG X L, et al. On charac-teristics of upper atmosphere aerodynamics of flying vehicles [J]. Physics of Gases, 2021, 6(1): 1-9. (in Chinese)
[2] CHEN Z, HUANG F, JIN X H, et al. A novel light-weight aerodynamic design for the wings of hyper-sonic vehicles cruising in the upper atmosphere [J]. Aerospace Science and Technology, 2020, 109: 106418.
[3] PRIETO D M, GRAZIANO B P, ROBERTS P. Space-craft drag modelling [J]. Progress in Aerospace Sci-ences, 2014, 64:56-65.
[4] CRISP N H, ROBERTS P, LIVADIOTTI S, et al. The benefits of very low earth orbit for earth observation missions [J]. Progress in Aerospace Sciences, 2020, 117: 100619.
[5] 靳旭红,黄飞,张俊,等.上层大气层飞行器研究进展及气动技术挑战[J].航空学报, 2024, 46(22): 030254.
JIN X H, HUANG F, ZHANG J, et al. Spacecraft in the upper atmosphere: research development and aer-odynamic challenges [J]. Acta Aeronautica et Astro-nautica Sinica, 2024, 46(1): 130254. (in Chinese)
[6] CRISP N H, ROBERTS P, LIVADIOTTI S, et al. In-orbit aerodynamic coefficient measurements using SOAR (Satellite for Orbital Aerodynamics Research) [J]. Acta Astronautica, 2021, 180: 85-99.
[7] 苏鹏辉, 刘奕豪, 靳旭红,等. 吸气式电推进系统进气道性能数值研究与可行性分析 [J]. 航空学报, 2025, 46: 131569.
SU P H, LIU Y H, JIN X H, et al. Numerical investi-gation of inlet performance and feasibility analysis of an atmosphere-breathing electric propulsion system [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46: 131569. (in Chinese)
[8] LIVADIOTTI S, CRISP N H, ROBERTS P C E, et al. A review of gas-surface interaction models for orbital aerodynamics applications [J]. Progress in Aerospace Sciences, 2020, 119: 100675.
[9] PADILLA J F, BOYD I D. Assessment of gas–surface interaction models for computation of rarefied hyper-sonic flow [J]. Journal of Thermophysics and Heat Transfer, 2009, 23 (1): 96–105.
[10] LIANG T F, LI Q, YE W J. Performance evaluation of Maxwell and Cercignani-Lampis gas-wall interaction models in the modeling of thermally driven rarefied gas transport [J]. Physical Review E, 2013, 88: 013009.
[11] DENG J C, ZHANG J, LIANG T F, et al. A modified Cercignani–Lampis model with independent momen-tum and thermal accommodation coefficients for gas molecules scattering on surfaces [J]. Phys. Fluids, 2022, 34: 107108.
[12] JIN X H, CHENG X L, HUANG Y Q, et al. Numerical analysis of inlet flows at different altitudes in the up-per atmosphere [J]. Physics of Fluids, 2023, 35: 093605.
[13] 陶瑞灵, 王智慧. 上层大气层气固相互作用的分子动力学研究 [J]. 力学学报, 2025, 57(1): 65-78.
TAO R L, WANG Z H. Molecular dynamics study of gas-surface interactions in upper atmosphere [J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 65-78.
[14] NISHIYAMA K. Air breathing ion engine concept [C]// Proceedings of 54th International Astronautical Congress of the International Astronautical Federation. Reston: AIAA, 2003: 1-8.
[15] ANDREUSSI T, FERRATO E, PAISSONI C A, et al. The AETHER project: development of air-breathing electric propulsion for VLEO missions [J]. CEAS Space Journal, 2022, 14: 717–740.
[16] SINGH L A, WALKER M L R. A review of research in low earth orbit propellant collection [J]. Progress in Aerospace Sciences, 2015, 75: 15-25.
[17] TAGAWA M, YOKOTA K, NISHIYAMA K, et al. Experimental study of air breathing ion engine using laser detonation beam source [J]. Journal of Propul-sion and Power, 2013, 2(3): 501-506.
[18] ROMANO F, ESPINOSA-OROZCO J, PFEIFFER M, et al. Intake design for an Atmosphere-Breathing Electric Propulsion System (ABEP) [J]. Acta Astro-nautica, 2021, 187: 225-235.
[19] JACKSON S W, MARSHALL R. Conceptual design of an air-breathing electric thruster for CubeSat appli-cations [J]. Journal of Spacecraft and Rockets, 2018, 55: 632-639.
[20] LI Y, CHEN X, LI D, et al. Design and analysis of vacuum air-intake device used in air-breathing elec-tric propulsion [J]. Vacuum, 2015, 120: 89-95.
[21] WU J, ZHENG P, ZHANG Y, et al. Recent develop-ment of intake devices for atmosphere-breathing elec-tric propulsion system [J]. Progress in Aerospace Sci-ences, 2022, 133: 100848.
[22] JIN X H, SU P H, CHEN Z, et al. Numerical and ex-perimental investigation of rarefied hypersonic flow in a nozzle [J]. Physics of Fluids, 2024, 36: 116131.
[23] JIN X H, MIAO W B, CHENG X L, et al. Monte Car-lo simulation of inlet flows in atmosphere-breathing electric propulsion [J]. AIAA Journal, 2024, 62(2): 518-529.
[24] 靳旭红, 程晓丽, 沈清, 等. 吸气式电推进系统进气道气体流动数值分析 [J]. 中国科学: 物理学 力学 天文学, 2024, 54(3): 234712.
JIN X H, CHENG X L, SHEN Q, et al. Numerical analysis of inlet flows in an atmosphere-breathing electric propulsion system [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2024, 54(3): 234712. (in Chinese)
[25] 周靖云, 靳旭红, 程晓丽, 等. 气固相互作用对吸气式电推进系统进气道性能的影响研究. 清华大学学报 (自然科学版), 2024, 64(9): 1536-1546.
[26] JIN X H, CHENG X L, HUANG Y Q, et al. Numerical analysis of inlet flows in atmosphere-breathing elec-tric propulsion systems with different sizes [J]. Aero-space Science and Technology, 2025, 158: 109897.
[27] 张俊, 蒋亦凡, 陈松, 等. 超低轨卫星气动阻力计算与减阻设计研究综述 [J]. 航空学报, 2024, 45(21): 029796.
ZHANG J, JIANG Y F, CHEN S, et al. Overview of aerodynamic drag calculation and reduction design for very low Earth orbit satellites [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 029796. (in Chinese)
[28] 李俊红, 黄飞, 靳旭红, 等. 上层大气层飞行器气动布局优化设计 [J]. 航空学报, 2024, 45(22): 130164.
LI J H, HUANG F, JIN X H, et al. Aerodynamic lay-out optimization design of upper atmosphere aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 130164. (in Chinese)
[29] 靳旭红, 黄飞, 程晓丽, 等. 超低轨航天器气动特性快速预测的试验粒子Monte Carlo方法 [J]. 航空学报, 2017, 38(5): 120625.
JIN X H, HUANG F, CHENG X L, et al. Test particle Monte Carlo method for rapid prediction of aerody-namic properties of spacecraft in lower LEO [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120625. (in Chinese)
[30] JIN X H, HUANG F, CHENG X L, et al. Monte Carlo simulation for aerodynamic coefficients of satellites in Low-Earth Orbit [J]. Acta Astronautica, 2019, 160: 222-229.
[31] BIRD G A. Approach to translational equilibrium in a rigid sphere gas [J]. Physics of Fluids, 1963, 6: 1518–1519.
[32] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows [M]. New York: Oxford Uni-versity Press, 1994: 340–346.
[33] BIRD G A. Monte Carlo simulation of gas flows [J]. Annual Review of Fluid Mechanics, 1978, 10(8): 11–31.
[34] PLIMPTON S J, MOORE S G, BORNER A, et al. Direct simulation Monte Carlo on petaflop super-computers and beyond [J]. Physics of Fluids, 2019, 31: 086101.
[35] BORGNAKKE C, LARSEN P S. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture [J]. Journal of Computational Physics, 1975, 18(4): 405–420.
[36] JIN X H, HUANG F, MIAO W B, et al. Effects of the boundary-layer thickness at the cavity entrance on rarefied hypersonic flows over a rectangular cavity [J]. Physics of Fluids, 2021, 33: 036116.
[37] JIN X H, CHENG X L, WANG Q, et al. Numerical analysis of rarefied hypersonic flows over inclined cavities [J]. International Journal of Heat and Mass Transfer, 2023, 214: 124401.
[38] GALLIS M A, KOEHLER T P, TORCZYNSKI J R, et al. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability [J]. Physics of Fluids, 2015, 27: 084105.
[39] GALLIS M A, BITTER N P, KOEHLER T P, et al. Molecular-level simulations of turbulence and its de-cay [J]. Phys Rev Lett, 2017, 118: 064501.
[40] Leomanni M, Garulli A, Giannitrapani A, et al. Pro-pulsion options for very low Earth orbit microsatel-lites [J]. Acta Astronautica, 2017, 133: 444–454.
[41] ANDREUSSI T, FERRATO E, GIANNETTI V. A re-view of air?breathing electric propulsion: from mis-sion studies to technology verification [J]. Journal of Electric Propulsion, 2022, 1:31.
[42] GARRIGUES L. Computational study of Hall-effect thruster with ambient atmospheric gas as propellant [J]. Journal of Propulsion and Power, 2012, 28: 344-354.
[43] GURCIULLO A, FABRIS A L, CAPPELLI M A. Ion plume investigation of a Hall effect thruster operating with Xe/N2 and Xe/air mixtures [J]. J Phys D Appl Phys, 2019, 52(46).