(重投)直升机全机气动噪声特性风洞试验研究

  • 梁勇 ,
  • 张卫国 ,
  • 车兵辉 ,
  • 袁红刚 ,
  • 魏春华 ,
  • 杨柠檬
展开
  • 中国空气动力研究与发展中心

收稿日期: 2025-04-03

  修回日期: 2025-06-16

  网络出版日期: 2025-06-20

(Resubmit)Wind Tunnel Tests on Helicopter Aircraft Model Aeroacoustic Characteristic

  • LIANG Yong ,
  • ZHANG Wei-Guo ,
  • CHE Bing-Hui ,
  • YUAN Hong-Gang ,
  • WEI Chun-Hua ,
  • YANG Ning-Meng
Expand

Received date: 2025-04-03

  Revised date: 2025-06-16

  Online published: 2025-06-20

摘要

基于声学风洞开展直升机全机气动噪声特性研究,是评估直升机气动噪声水平最为直接有效的手段。中国空气动力研究与发展中心在5.5米×4米声学风洞配套了3米直径旋翼直升机噪声试验台,并发展了相应的直升机气动噪声试验技术。本研究是我国首次针对直升机全机构型开展的气动噪声试验,系统研究了直升机全机及不同部件组合的气动噪声特性。首先,通过对比BO-105旋翼国内外不同风洞性能数据,验证了试验模型操纵系统控制的精度,评估了试验风洞的信噪比,以确保试验结果的准确性。其次,通过开展旋翼/机身构型和全机构型的气动噪声风洞试验,研究了前进比、拉力系数、总距角和轴倾角等参数对噪声频谱特性、倍频噪声幅值和总声压级的影响;最后,通过对比旋翼/机身构型和全机构型,分析了尾桨对全机噪声的贡献作用。研究结果表明,在悬停状态下,低总距旋翼会诱发强烈的桨叶-尾迹干扰噪声;在水平前飞状态下,拉力系数对轴倾角前倾时噪声影响效果不大;而在斜下降状态下,桨-涡干扰机制受到影响,出现了拉力系数增加噪声反而降低的现象;尾桨主要在悬停和水平前飞状态下对全机噪声有增强作用,而在斜下降时,由于桨-涡干扰的强噪声覆盖,尾桨噪声对全机噪声大小和辐射特性影响相对较小。

本文引用格式

梁勇 , 张卫国 , 车兵辉 , 袁红刚 , 魏春华 , 杨柠檬 . (重投)直升机全机气动噪声特性风洞试验研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32072

Abstract

The effective and direct means of helicopter aircraft aeroacoustics evaluating are experiments in aeroacoustic wind tunnel. In recent years, 3m diameter rotor test equipment was researched, and corresponding technology has been developed in China Aerodynamics Research and Development Center. As the first test of helicopter model full configuration aeroacousic test in windtunnel, the aeroa-coustic characteristics of full configuration and components are researched. Firstly, in order to ensure the accuracy of the test results, the precision of model control and ratio of signal and noise are validated, by comparing the test data form different wind tunnel. Sec-ondly, by conducting aerodynamic noise wind tunnel tests on main rotor/fuselage configurations and full configurations, the impact of parameters such as advance ratio, thrust coefficient, collective pitch angle, and shaft tilt angle on noise spectrum characteristics, harmonic noise amplitude, and OASPL was analyzed. At last, the contribution of tail rotor to the aeroacoustic of full configuration is also analyzed. The research results indicate that in the hovering state, intense blade-wake interaction noise can be induced at low collective pitch angle in hovering state. The thrust coefficient has little on noise level in forward. In decent flight, the sound level decreases with the increase of the thrust coefficient. The influence of tail rotor is also researched, the full configuration aeroacoustic is strengthen by the tail rotor acoustic in hovering and forward level flight. However, the tail rotor aeroacoustic has little influence on the full configuration aeroacoustic as the result of intense blade vortex interaction noise in the decent flight conditon.

参考文献

[1] SCHMITZ F H. The Challenges and Possibilities of a Truly Quiet Helicopter [J]. Journal of the American Helicopter Society, 2016, 61 [2] HELLER H. Into the physics of rotor aeroacoustics–highlights of recent European helicopter noise research[C]. Adelaide: Fifth international congress on sound and vibration., 1997. [3] WILSON J C. A general Rotor Model System for Wind-Tunnel Investigations[J]. Journal of Aircraft, 1977, 14(7): 639-643. [4] KELLEY H L. Aerodynamic Performance of a 0.27-scale Model of an AH-64 Helicopter with Baseline and Alternate Rotor Blade Sets [R]. Washington:NASA,1990. [5] STRAUB F, JOHNSTON R, HEAD R, et al. Design and development of a dynamically scaled model AH-64 main rotor[C]. Hague: Aircraft Design Systems and Operations Meeting. 1985 [6] WELLER W H. Experimental investigation of effects of blade tip geometry on loads and performance for an articulated rotor system[R]. Washington:NASA, 1979. [7] SCHEIMAN J, HOAD D R. Investigation of Blade Impulsive Noise on a Scaled Fully Articulated Rotor System[R]. 1977. [8] MARTIN R, BURLEY C, ELLIOTT J W. Acoustic test of a model rotor and tail rotor: Results for the isolated rotors and combined configuration[R]. Washington:NASA, 1989. [9] NORMAN T R, SHINODA P M, KITAPLIOGLU C, et al. Low-speed wind tunnel investigation of a full-scale UH-60 rotor system[C]. Montreal: Annual Forum Proceedings-American Helicopter Society. American Helicopter Society, INC, 2002, 58(1): 1083-1102. [10] [10] RUSSELL C R. Shake Test Results and Dynamic Calibration Efforts for the Large Rotor Test Apparatus[C]// San Francisco: Decennial AHS Aeromechanics Specialists Conference. 2014. [11] SHINODA P M. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80-by 120-foot wind tunnel[M]. National Aeronautics and Space Administration, Ames Research Center, 1996. [12] PETERSON R L. Full-scale hingeless rotor performance and loads[R]. California, Ames Research Center, 1995 [13] LAU B H, STRAUB F, ANAND V. SMART rotor development and wind-tunnel test[C]// Hamburg: 35th European Rotorcraft Forum. 2009. [14] STRAUB F, ANAND V, BIRCHETTE T. SMART Rotor Wind Tunnel Test Report[R]. California: Ames Research Center, 2015. [15] Straub F K, Anand V R, Lau B H, et al. Wind tunnel test of the SMART active flap rotor[J]. Journal of the American Helicopter Society, 2018, 63(1): 1-16. [16] Jacklin S A, Lau B H, Nguyen K Q, et al. Full-Scale Wind Tunnel Test of the McDonnell Douglas Five-Bladed Advanced Bearingless Rotor: Performance, Stability, Loads, Control Power, Vibration, and HHC Data[C]. San Francisco:American Helicopter Society, American Helicopter Society Aeromechanics Specialists Conference, 1994. [17] SEIDEL M, MAARSINGH R. Test capabilities of the Germ SEIDEL M, MAARSINGH R. Test capabilities of the German-Dutch wind tunnel DNW for rotors[C]. Netherlands: The European Rotoraircraft and Powered Lift aircraft Forum, 1979.an-Dutch wind tunnel DNW for rotors[J]. 1979. [18] SEIDEL M, MAARSINGH R. Test capabilities of the German-Dutch wind tunnel DNW for rotors[C]//Netherlands: The European Rotoraircraft and Powered Lift aircraft Forum, 1979. [19] LANGER H, BRAUN G, JUNKER B. Helicopter Rotor Test Rig (RoTeSt) in DNW: Application and Results[R]. Netherlands: DNW, 1989. [20] YUNG H Y, GMELIN B, HELLER H, et al. HHC Aeroacoustics Rotor Test at the DNW: The Joint German/French/US HART Project[C]//AMSTERDAM: The Twentieth. European Rotorcraft Forum. NLR, 1994. [21] SPLETTSTOESSER W, KUBE R, SEELHORST U, et al. Higher harmonic control aeroacustic rotor test (hart)-test documentation and representative results[R]. Braunschweig: DLR,1996. [22] SPLETTSTOESSER W R, Kube R, WAGNER W, et al. Key results from a higher harmonic control aeroacoustic rotor test (HART)[J]. Journal of the American Helicopter Society, 1997, 42(1): 58-78. [23] RACHAPROLU J S, GREENWOOD E. Helicopter Noise Source Separation Using an Order Tracking Filter[J]. Journal of the American Helicopter Society, 2024, 69(1): 1-9. [24] OLSMAN W F J . Method for the Extraction of Helicopter Main and Tail Rotor Noise[J]. Journal of Aircraft, 2018, 55(2):805-816. [25] Visintainer J A, Marcolini M A, Burley C L, et al. Acoustic Predictions Using Measured Pressures from a Model Rotor in the DNW[J]. Journal of the American Helicopter Society, 1993, 38(3):35. [26] RAFFEL M, BAUKNECHT A, RAMASAMY M, et al.. Contributions of particle image velocimetry to helicopter aerodynamics[J]. AIAA Journal, 2017, 55(9): 2859-2874. [27] 王伟琪, 陈希, 招启军. 地效环境下悬停状态直升机旋翼桨/涡干扰噪声特性[J]. 航空学报, 2024, 45(12): 72-86. WANG W Q,CHEN X,ZHAO Q J. Hovering helicopter rotor blade/vortex interaction noise characteristics in ground effect environment[J]. Acta Aeronautica et Astronautica Sinica,2024,45(12):129196(in Chinese). doi:10. 7527/ S1000-6893. 2023. 29196 [28] 史勇杰, 徐国华. 飞行参数对旋翼桨-涡干扰噪声特性的影响机理研究[J]. 航空学报, 2013, 34(11): 2520-2528. SHI Y J, Xu G H. Research on the influence of flight parameters on helicopter rotor BVI noise characteristics. Acta Aeronautica et Astronautica Sinica,2013,34(11):2520-2528. (in Chinese) [29] 王亮权, 徐国华, 史勇杰, 等. 高阶谐波控制对旋翼桨-涡干扰载荷和噪声的影响[J]. 航空学报, 2017, 38(7): 70-79. WANG L Q, XU G H, SHI Y J, et al. Influence of higher harmonic control on airload and acoustics of rotor blade vortex interaction [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520847. (in Chinese) [30] 韩少强, 宋文萍, 韩忠华, 等. 高速共轴刚性旋翼非定常流动高精度数值模拟[J]. 航空学报, 2024, 45(9): 177-196. HAN S Q, SONG W P, HAN Z H, et al. High-accuracy numerical-simulation of unsteady flow over high-speed coaxial rigid rotors [J]. Acta Aeronautica et Astronautica Sinica,2024, 45(9):529064(in Chinese). doi:10.7527/ S1000-6893.2023.29064 [31] 祁浩天,王亮权,张卫国,等. 旋翼间距对共轴刚性旋翼气动噪声的影响[J].航空学报, 2024, 45(21):130153. QI H T, WANG L Q, ZHANG W G, et al. Effect of rotor spacing on aerodynamic noise of rigid coaxial rotor [J]. Acta Aeronautica et Astronautica Sinica,2024, 45(21):130153(in Chinese) [32] 刘向楠, 刘少腾, 周国成, 等. 旋翼桨–涡干扰噪声特性风洞试验研究[J]. 实验流体力学, 2023, 37(3): 84-91. LIU X N, LIU S T, ZHOU G C, et al. Wind tunnel test research on the characteristics of rotor blade-vortex interaction noise[J]. Journal of Experiments in Fluid Mechanics, 2023,37(3):84-91. (in Chinese). [33] 丁存伟, 周国成, 陈宝, 等. 直升机涵道尾桨气动噪声特性风洞试验研究[J]. 实验流体力学, 2023, 37(3): 107-112. DING C W, ZHOU G C, CHEN B, et al. Experimental study on aerodynamic noise characteristics of helicopter ducted tail rotor[J]. Journal of Experiments in Fluid Mechanics,2023,37(3):107-112. [34] Langer H J, Peterson R L, Maier T H. An experimental evaluation of wind tunnel wall correction methods for helicopter performance[C]//American Helicopter Society 52nd Annual Forum, Washington, DC. 1996. [35] 孙正荣. BO-105旋翼模型第二期8米×6米风洞对比试验[J]. 气动试验与测量控制 SUN Z R. Experiments of BO-105 rotor model in 8m × 6m wind tunnel of CARDC for the second data comparisons[J]. Aerodynamic Experiment and Measurement &Control, 1995, 9(1): 46-51.
文章导航

/