综述

固定翼舰载有人/无人机着舰引导控制研究进展

  • 张志冰 ,
  • 甄子洋
展开
  • 1.中国航空工业集团 沈阳飞机设计研究所,沈阳 110035
    2.南京航空航天大学 自动化学院,南京 210016
    3.航空航天结构力学及控制全国重点实验室,南京 210016

收稿日期: 2025-05-30

  修回日期: 2025-06-09

  录用日期: 2025-06-13

  网络出版日期: 2025-06-16

Research progress on guidance and control of fixed-wing manned and unmanned carrier-based aircraft landing

  • Zhibing ZHANG ,
  • Ziyang ZHEN
Expand
  • 1.Shenyang Aircraft Design and Research Institute,AVIC,Shenyang 110035,China
    2.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    3.National Key Laboratory of Aerospace Structures Mechanics and Control,Nanjing 210016,China

Received date: 2025-05-30

  Revised date: 2025-06-09

  Accepted date: 2025-06-13

  Online published: 2025-06-16

摘要

舰载机着舰技术是发展现代航母与两栖舰队的核心技术之一,直接影响了舰载机的安全性、可靠性及作战效率。系统性地综述了固定翼舰载有人/无人机着舰引导与控制的前沿技术与关键挑战。首先,概述了固定翼舰载有人/无人机着舰的整体发展现状,分析了不同着舰系统在性能与任务需求上的差异。然后,在着舰引导技术方面,探讨了典型单模引导技术的应用现状与多体制引导技术的发展趋势。接着,在着舰控制技术方面,分析了典型飞行控制系统架构与先进飞行控制技术的研究现状。随后,讨论了与着舰系统安全相关的技术研究现状。最后,总结当前研究成果,展望未来发展方向,旨在为推动固定翼舰载有人/无人机着舰技术的进一步发展提供参考。

本文引用格式

张志冰 , 甄子洋 . 固定翼舰载有人/无人机着舰引导控制研究进展[J]. 航空学报, 2025 , 46(13) : 532336 -532336 . DOI: 10.7527/S1000-6893.2025.32336

Abstract

The technology of carrier-based aircraft landing is one of the core enablers for the development of modern aircraft carriers and amphibious fleets, directly impacting the safety, reliability, and operational efficiency of carrier-based aircraft. This paper systematically reviews the state-of-the-art technologies and key challenges in the landing of fixed-wing manned and unmanned carrier-based aircraft. First, it provides an overview of the current development status of fixed-wing manned/unmanned carrier-based landing systems and analyzes the differences in performance and mission requirements among various landing systems. Then, in terms of landing guidance technologies, the paper explores the application status of typical single-mode guidance methods and the development trends of multi-modal guidance technologies. In the area of landing control, it analyzes the architecture of typical flight control systems and the research progress of advanced flight control technologies. Furthermore, the study discusses the current research on technologies related to the safety of carrier landing systems. Finally, it summarizes the existing achievements and outlines future development directions, aiming to provide a reference for advancing fixed-wing carrier-based manned/unmanned landing technologies.

参考文献

[1] DEPARTMENT of the NAVY. Naval aviation vision 2030-2035: NAVAIR Public Release 2021-478[R]. Washington, D.C.: Department of the Navy, 2021.
[2] 王永庆. 固定翼舰载战斗机关键技术与未来发展[J].航空学报202142(08): 525859.
  WANG Y Q. Fixed-wing carrier-based aircraft: Key technologies and future development[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525859 (in Chinese).
[3] 万兵, 苏析超, 汪节, 等. 基于模型预测控制算法的精确着舰控制方法[J]. 北京航空航天大学学报202450(4): 1197-1207.
  WAN B, SU X C, WANG J, et al. A precise landing control method based on model predictive control algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics202450(4): 1197-1207 (in Chinese).
[4] 吴文海, 汪节, 高丽, 等. MAGIC CARPET着舰技术分析[J]. 系统工程与电子技术201840(9): 2079-2091.
  WU W H, WANG J, GAO L, et al. Analysis on MAGIC CARPET carrier landing technology[J]. Systems Engineering and Electronics201840(9): 2079-2091 (in Chinese).
[5] 宋立廷, 周思羽, 张杨, 等. 级联式预设性能动态逆解耦直接升力着舰控制[J]. 哈尔滨工业大学学报202355 (12): 42-53.
  SONG L T, ZHOU S Y, ZHANG Y, et al. Cascaded comprehensive direct lift control law based on prescribed performance dynamic inversion for carrier landing[J]. Journal of Harbin Institute of Technology202355 (12): 42-53 (in Chinese).
[6] 杨一栋, 甄子洋, 邱述斌, 等. 无人机着舰制导与控制[M]. 北京: 国防工业出版社, 2013: 1-5.
  YANG Y D, ZHEN Z Y, QIU S B, et al. Unmanned aerial vehicle carrier landing guidance and control[M]. Beijing: National Defence Industry Press, 2013: 1-5 (in Chinese).
[7] 江驹, 王新华, 甄子洋, 等. 舰载机起飞着舰引导与控制[M]. 北京: 科学出版社, 2019: 2-5.
  JIANG J, WANG X H, ZHEN Z Y, et al. Guidance and control of carrier-based aircraft take off and landing[M]. Beijing: Science Press, 2019: 2-5 (in Chinese).
[8] 张智, 朱齐丹, 张雯, 等. 航母舰载机全自动引导着舰技术[M]. 哈尔滨:哈尔滨工程大学出版社, 2016: 1-7.
  ZHANG Z, ZHU Q D, ZHANG W, et al. Full-automatic guided landing technology of carrier-based aircraft[M]. Harbin: Harbin Engineering University Press, 2016: 1-7 (in Chinese).
[9] 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报201738(2): 020435.
  ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica201738(2): 020435 (in Chinese).
[10] 张志冰, 甄子洋, 江驹, 等. 舰载机自动着舰引导与控制综述[J]. 南京航空航天大学学报201850(6): 734-744.
  ZHANG Z B, ZHEN Z Y, JIANG J, et al. Review on development in guidance and control of automatic landing of carrier-based aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics201850(6): 734-744 (in Chinese).
[11] 甄子洋. 舰载无人机自主着舰回收制导与控制研究进展[J]. 自动化学报201945(4): 669-681.
  ZHEN Z Y. Research development in autonomous carrier-landing/ship-recovery guidance and control of carrier-based unmanned aerial vehicles[J]. Acta Automatica Sinica201945(4): 669-681 (in Chinese).
[12] GlobalSecurity.org. Naval unmanned combat air vehicle [EB/OL]. (2025-01-09) [2025-05-30]. .
[13] DEPARTMENT of DEFENSE. Unmanned aircraft systems roadmap[R]. Washington, D.C.: Office of the Secretary of Defense, 2005.
[14] WHITTENBURY J. Configuration design development of the navy UCAS-D X-47B: AIAA-2011-7041[R]. Reston: AIAA, 2011.
[15] GERTLER J. History of the navy UCLASS program requirements: In brief[M]. Washington, DC: Congressional Research Service, 2015.
[16] ASIA PACIFIC DEFENCE REPORTER. MQ-25 stingray CBARS program dramatically shifts its orientation[EB/OL]. (2024-03-20) [2025-05-30]. .
[17] 朱超磊. 美军MQ-25A舰载无人加油机研制历程及影响分析[J]. 国防科技工业2021(5): 61-65.
  ZHU C L. Development course and influence analysis of MQ-25A unmanned tanker on board of US Army[J]. Defense Science & Technology Industry2021, (5): 61-65 (in Chinese).
[18] 郑震山, 何肇雄, 李翀伦, 等. 美军发展MQ-25A舰载无人加油机的动因及启示[J]. 航空学报202344(20): 628797.
  ZHENG Z S, HE Z X, LI C L, et al. Motivation and inspiration for U. S. military developing MQ-25A carrier-based aerial-refueling UAS[J]. Acta Aeronautica et Astronautica Sinica202344(20): 628797 (in Chinese).
[19] SOUSA P, WELLONS L, COLBY G, et al. Test results of an F/A-18 automatic carrier landing using shipboard relative global positioning system: ADA417314[R]. Patuxent River: Rapport technique, Naval Air Warfare Center Aircraft Division, 2003.
[20] DENHAM J W. Project MAGIC CARPET: “Advanced controls and displays for precision carrier landings”: AIAA-2016-1770[R]. Reston: AIAA, 2016.
[21] 段卓毅, 王伟, 耿建中, 等. 舰载机人工进场着舰精确轨迹控制技术[J]. 航空学报201940(4): 622328.
  DUAN Z Y, WANG W, GENG J Z, et al. Precision trajectory manual control technologies for carrier-based aircraft approaching and landing[J]. Acta Aeronautica et Astronautica Sinica201940(4): 622328 (in Chinese).
[22] WALKER H P, PAGAN J, WALWANIS M. Improving the safety of carrier landings: Maritime augmented guidance with integrated controls for carrier approach and recovery precision enabling technologies[C]∥Orlando: Annual SAFE Symposium, 2014: 310-317.
[23] 朱玉莲, 甄子洋, 季雨璇, 等. 舰载飞机着舰直接力控制方法[J]. 电光与控制202027(11): 1-5.
  ZHU Y L, ZHEN Z Y, JI Y X, et al. Direct lift control for auto-landing of shipboard aircraft[J]. Electronics Optics & Control202027( 11) : 1-5 (in Chinese).
[24] 朱玉莲. 舰载机“魔毯”着舰技术研究[D]. 南京: 南京航空航天大学, 2020: 42-48.
  ZHU Y L. Research on “magic carpet” landing technology of carrier-based aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020:42-48 (in Chinese).
[25] SHAFER D M, PAUL R C, KING M J, et al. Aircraft carrier landing demonstration using manual control by a ship-based observer: AIAA?2019?0010[R]. Reston,AIAA, 2019.
[26] ROBBINS D, BOBALIK J, DE STENA D, et al. F-35 subsystems design, development & verification: AIAA-2018-3518[R]. Reston: AIAA, 2018.
[27] 孙聪. 从空战制胜机理演变看未来战斗机发展趋势[J]. 航空学报202142(8): 525826.
  SUN C. Development trend of future fighter: a review of evolution of winning mechanism in air combat[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525826 (in Chinese).
[28] PRICKETT A L, PARKES C J. Flight testing of the F/A-18E/F automatic carrier landing system[C]?∥2001 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2001: 2593-2612.
[29] URNES J M, HESS R K. Development of the F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics19858(3): 289-295.
[30] 顾海燕, 熊健. 全自动精密进近引导与传输技术研究[J]. 电讯技术202464(7): 1102-1106.
  GU H Y, XIONG J. Research on fully automatic precision approach guidance and transmission technology[J]. Telecommunication Engineering202464(7): 1102-1106 (in Chinese).
[31] MCPEAK M A. Joint USAF-USN mission need statement for precision approach and landing capability: USAF 002 94[R]. Washington, D.C.: U.S. Air Force, 1994.
[32] BOSELEY K, WAID J. Demonstration system for u sing shipboard-relative GPS[J]. GPS World200516(4): 24-33.
[33] HARKER R, GILLIGAN J. Dual thread-automatic takeoff and landing system (dt-atls)[C]?∥Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006). Manassas: ION, 2006: 1146-1150.
[34] 李青松. 飞机进近着舰机载端自主完好性监测与多天线多约束定姿方法研究[D]. 长沙: 国防科学技术大学, 2016: 72-78.
  LI Q S. Research on airborne autonomous integrity monitoring for aircraft approach and landing and muti-constraint attitude determination methods with muti-antenna[D]. Changsha: National University of Defense Technology, 2016: 72-78 (in Chinese).
[35] 王官龙, 崔晓伟, 陆明泉. 北斗三频海基JPALS无故障导航算法[J]. 航空学报201738(12): 321340.
  WANG G L, CUI X W, LU M Q. Triple-frequency sea-based JPALS fault-free navigation algorithm for BDS[J]. Acta Aeronautica et Astronautica Sinica201738(12): 321340 (in Chinese).
[36] COUTARD L, CHAUMETTE F, PFLIMLIN J M. Automatic landing on aircraft carrier by visual servoing[C]?∥2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2011: 2843-2848.
[37] 毕道明, 黄辉, 范静, 等. 视觉着舰中非合作结构化特征匹配算法[J]. 南京航空航天大学学报202153(3): 395-401.
  BI D M, HUANG H, FAN J, et al. Non?cooperative structural feature matching algorithm in visual landing[J]. Journal of Nanjing University of Aeronautics and Astronautics202153(03): 395-401 (in Chinese).
[38] 甄冲, 曲晓雷, 王翼丰, 等. 视觉引导误差对自动着舰性能影响研究[J]. 航空工程进展202516(1): 101-107+116.
  ZHEN C, QU X L, WANG Y F, et al. Impact of visual guidance error on automatic carrier landing performance[J]. Advances in Aeronautical Science and Engineering202516(1): 101-107+116 (in Chinese).
[39] 牛斌, 张志冰, 黄辉, 等. 基于无迹卡尔曼滤波的视觉着舰引导算法[J]. 控制工程202330 (3): 459-468.
  NIU B, ZHANG Z B, HUANG H, et al. Visual landing guidance algorithm based on unscented Kalman filtering[J]. Control Engineering of China202330 (3): 459-468 (in Chinese).
[40] 阴浩博. 基于视觉的舰载机着舰引导技术及仿真系统研究[D]. 南京: 南京航空航天大学, 2022: 33-34, 52-57.
  YIN H B. Research on vision-based carrier aircraft landing guidance technology and simulation system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022: 33-34, 52-57 (in Chinese).
[41] 李喜龙, 范海震, 史会丽. 光电引导系统在舰载机着舰引导中的作用分析[J]. 舰船电子工程201737(7): 145-149,164.
  LI X L, FAN H Z, SHI H L. Analysis of the role of electro-optical guidance systems in carrier-based aircraft landing guidance[J]. Ship Electronic Engineering201737(7): 145-149, 164 (in Chinese).
[42] WON D H, LEE E, HEO M, et al. Selective integration of GNSS, vision sensor, and INS using weighted DOP under GNSS-challenged environments[J]. IEEE Transactions on Instrumentation and Measurement201463(9): 2288-2298.
[43] 陈逸飞. 舰载机着舰多体制引导系统设计与分析[D].南京: 南京航空航天大学, 2021: 24-25.
  CHEN Y F. Design and analysis of multi-system guidance system for carrier-based aircraft landing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 24-25 (in Chinese).
[44] 李青松. 飞机着舰机载端卫星/惯性组合精密相对定位完好性监测方法研究[D]. 长沙: 国防科技大学, 2022: 56-60.
  LI Q S. Research on airborne integrity monitoring of DGNSS/INS integrated precision relative positioning for shipboard landing[D]. Changsha: National University of Defense Technology, 2022: 56-60 (in Chinese).
[45] 熊晨耀. 北斗/惯性紧组合高精度高完好位置增量导航方法研究[D]. 长沙: 国防科技大学, 2021: 23-27.
  XIONG C Y. Research on tightly coupled BDS/INS high precision and high integrity position increment navigation method[D]. Changsha: National University of Defense Technology, 2021: 23-27 (in Chinese).
[46] MENG Y, WANG W, HAN H, et al. A visual/inertial integrated landing guidance method for UAV landing on the ship[J]. Aerospace Science and Technology201985: 474-480.
[47] GUO D, WANG X D. Quasi-Monte Carlo filtering in nonlinear dynamic systems[J]. IEEE Transactions on Signal Processing200654(6): 2087-2098.
[48] WILKINSON C, FINDLAY D, BOOTHE K, et al. The sea-based automated launch and recovery system virtual testbed: AIAA-2014-0474[R]. Reston: AIAA, 2014.
[49] WILKINSON C, FINDLAY D, NICHOLS J, et al. Shipboard aircraft simulation with ship-relative navigation sensor modeling: AIAA-2016-1769[R]. Reston:AIAA, 2016.
[50] MISRA G, GAO T, BAI X. Modeling and simulation of UAV carrier landings: AIAA-2019-1981[R]. Reston:AIAA, 2019.
[51] YUAN Y, DUAN H B, ZENG Z G. Automatic carrier landing control with external disturbance and input constraint[J]. IEEE Transactions on Aerospace and Electronic Systems202359(2): 1426-1438.
[52] DUAN H B, CHEN L, ZENG Z G. Automatic landing for carrier-based aircraft under the conditions of deck motion and carrier airwake disturbances[J]. IEEE Transactions on Aerospace and Electronic Systems202258(6): 5276-5291.
[53] DUAN H B, YUAN Y, ZENG Z G. Automatic carrier landing system with fixed time control[J]. IEEE Transactions on Aerospace and Electronic Systems202258(4): 3586-3600.
[54] WANG J H, TANG H N, LIU H L, et al. Design of longitudinal automatic carrier landing system based on reinforcement learning[C]?∥International Conference on Guidance, Navigation and Control. Singapore: Springer Nature Singapore, 2022: 2964-2976.
[55] LEE B C, SAJ V, KALATHIL D, et al. Intelligent vision-based autonomous ship landing of VTOL UAVs[J]. Journal of the American Helicopter Society202368(2): 113-126.
[56] GREEN B E, FINDLAY D. CFD analysis of the F/A-18E Super Hornet during aircraft-carrier landing high-lift aerodynamic conditions: AIAA-2016-1768[R]. Reston:AIAA, 2016.
[57] BEVILAQUA P M. Genesis of the F-35 joint strike fighter[J]. Journal of Aircraft200946(6):1825-1836.
[58] POOLE D. X-35 flight test report[R].Los Angeles: Lockheed Martin Corporation, 2001.
[59] WILSON M. F-35 carrier suitability flight testing: AIAA-2018-3678[R]. Reston: AIAA, 2018.
[60] HARRIS J J. F-35 flight control law design, development and verification: AIAA-2018-3516[R]. Reston: AIAA, 2018.
[61] DESALVO M, HEATHCOTE D, SMITH M J, et al. Direct lift control using distributed aerodynamic bleed: AIAA-2019-0591[R]. Reston: AIAA, 2019.
[62] 刘宪飞, 王勇, 张代兵. 高抗扰高精度无人机着舰纵向飞行控制[J]. 北京航空航天大学学报201743(9): 1891-1899.
  LIU X F, WANG Y, ZHANG D B. High-immunity high-precision longitudinal flight control for UAV’s carrier landing[J]. Journal of Beijing University of Aeronautics and Astronautics201743(9): 1891-1899 (in Chinese).
[63] GUAN Z Y, LIU H, ZHENG Z W, et al. Moving path following with integrated direct lift control for carrier landing[J]. Aerospace Science and Technology2022120: 107247.
[64] 孙笑云, 江驹, 甄子洋, 等. 舰载飞机自适应模糊直接力着舰控制[J]. 西北工业大学学报202139(2): 359-366.
  SUN X Y, JIANG J, ZHEN Z Y, et al. Adaptive fuzzy direct lift control of aircraft carrier-based landing[J]. Journal of Northwestern Polytechnical University202139(2): 359-366 (in Chinese).
[65] LT C, GOTKE F, SCORER. Why land and then stop a V/STOL aircraft on a carrier[R]. Lancaster: Society of Experimental Test Pilots, 2007.
[66] WALKER G P, FULLER J W, WURTH S P. F-35B integrated flight-propulsion control development: AIAA-2013-4243[R]. Reston: AIAA, 2013.
[67] 刘亮, 陶呈纲, 薛艺璇, 等. 基于增量动态逆的V/STOL飞机悬停段控制[J]。 飞行力学202240(4): 27-33.
  LIU L, TAO C G, XUE Y X, et al. INDI based flight control for V/STOL aircraft in hover mode[J]. Flight Dynamics202240(4): 27-33 (in Chinese).
[68] 张志冰, 张秀林, 王家兴, 等. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报202142(8): 525840.
  ZHANG Z B, ZHANG X L, WANG J X, et al. A control method for IDLC manual landing precision based on multi-control surface control allocation[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525840 (in Chinese).
[69] 罗飞, 张军红, 耿延升, 等. 动态逆反馈控制框架下直接升力控制的控制分配研究[J]. 航空科学技术202233 (8): 51-60.
  LUO F, ZHANG J H, GENG Y S, et al. Study on control allocation technology of direct lift control under dynamic in version feedback control framework[J]. Aeronautical Science & Technology202233(8): 51-60 (in Chinese).
[70] 彭淼. 舰载机着舰执行器故障容错控制研究[D]. 南京: 南京航空航天大学, 2021: 42-45.
  PENG M. Research on fault-tolerant control for carrier-based aircraft with actuator failures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 42-45 (in Chinese).
[71] WANG L P, YUAN D H, CAO R T, et al. Automatic landing of carrier-based aircraft based on a collaboration of fault reconstruction and fault-tolerant control[J]. Aerospace Science and Technology2024144: 108772.
[72] 何胜涛. 直接升力作用下舰载机自动着舰容错控制研究[D]. 南京: 南京航空航天大学, 2023: 22-28.
  HE S T. Research on fault-tolerant control of carrier-based aircraft automatic landing under direct lift[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023: 22-28 (in Chinese).
[73] XUE Y X, ZHEN Z Y, YANG L Q, et al. Adaptive fault-tolerant control for carrier-based UAV with actuator failures[J]. Aerospace Science and Technology2020107: 106227.
[74] 何胜涛, 江驹, 余朝军, 等. 基于自适应固定时间的直接升力着舰容错控制[J]. 电光与控制202330(9): 29-35, 98.
  HE S T, JIANG J, YU C J, et al. Fault-tolerant control of direct lift carrier landing based on adaptive fixed time[J]. Electronics Optics & Control202330(9): 29-35, 98 (in Chinese).
[75] ZHEN Z Y, TAO G, YU C J, et al. A multivariable adaptive control scheme for automatic carrier landing of UAV[J]. Aerospace Science and Technology201992: 714-721.
[76] XIAO H, ZHEN Z, ZHANG Z, et al. Robust fault-tolerant preview control for automatic landing of carrier-based aircraft[J]. Aircraft Engineering and Aerospace Technology202496(5): 679-689.
[77] ZHEN Z Y, JIANG S Y, JIANG J. Preview control and particle filtering for automatic carrier landing[J]. IEEE Transactions on Aerospace and Electronic Systems201854(6): 2662-2674.
[78] BHATIA A K, JIANG J, ZHEN Z Y, et al. Robust adaptive preview control design for autonomous carrier landing of F/A-18 aircraft[J]. Aircraft Engineering and Aerospace Technology202193(4): 642-650.
[79] LEE B C, SAJ V, BENEDICT M, et al. A deep reinforcement learning control strategy for vision-based ship landing of vertical flight aircraft: AIAA-2021-3218[R]. Reston: AIAA, 2021.
[80] 柳仁地, 江驹, 张哲, 等. 基于强化学习的舰载机着舰直接升力控制技术[J/OL]. 北京航空航天大学学报, (2023-11-24)[2025-05-30]. .
  LIU R D, JIANG J, ZHANG Z, et al. Direct lift control technology of carrier aircraft landing based on reinforcement learning[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2023-11-24)[2025-05-30]. (in Chinese).
[81] DOU R, DUAN H B. Lévy flight based pigeon-inspired optimization for control parameters optimization in automatic carrier landing system[J]. Aerospace Science and Technology201761: 11-20.
[82] YANG Z Y, DUAN H B, FAN Y M, et al. Automatic carrier landing system multilayer parameter design based on Cauchy mutation pigeon-inspired optimization[J]. Aerospace Science and Technology201879: 518-530.
[83] DORSETT K M, MEHL D R. Innovative control effectors (ICE): WL-TR-96-3043[R]. Fort Worth, TX: Lockheed Martin Tactical Aircraft Systems, 1996.
[84] MATAMOROS I, DE VISSER C C. Incremental non-linear control allocation for a tailless aircraft with innovative control effectors: AIAA-2018-1116[R]. Reston:AIAA, 2018.
[85] 刘亮. 具有升力风扇的STOVL飞机起降控制研究[D]. 南京: 南京航空航天大学, 2022: 8-9.
  LIU L. Take-off and landing control for STOVL aircraft with lift fan[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022: 8-9 (in Chinese).
[86] 刘亮, 唐勇, 陶呈纲, 等. 基于控制分配的推力矢量短距起飞垂直降落飞机减速过渡控制[J]. 哈尔滨工程大学学报202243(6): 832-841.
  LIU L, TANG Y, TAO C G, et al. Deceleration transition controller design of thrust-vectored short takeoff and vertical landing aircraft based on control allocation[J]. Journal of Harbin Engineering University202243(6): 832-841 (in Chinese).
[87] ANTHONY B. PAGE E. DEAN M,et al. Flight testing of a retrofit reconfigurable control law architecture using an F/A-18C: AIAA-2006-6052[R]. Reston: AIAA, 2006.
[88] XUE Y X, CHEN Y K, TAO C G, et al. Disturbance rejection based on discrete-time adaptive preview control for unmanned aerial vehicle shipboard landing under structure damage[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering2024238(6): 1102-1111.
[89] XIAO H, ZHEN Z Y, XUE Y X. Fault-tolerant attitude tracking control for carrier-based aircraft using RBFNN-based adaptive second-order sliding mode control[J]. Aerospace Science and Technology2023139: 108408.
[90] XUE Y X, ZHEN Z Y, ZHANG Z B, et al. Automatic carrier landing for UAV based on integrated disturbance observer and fault-tolerant control[J]. Aircraft Engineering and Aerospace Technology202395(8): 1247-1256.
[91] 肖慧雨诺. 执行器故障下的舰载机着舰自适应预见容错控制研究[D]. 南京: 南京航空航天大学, 2024: 24-27.
  XIAO H Y N. Research on adaptive preview fault-tolerant control for carrier-based aircraft with actuator faults[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2024: 24-27 (in Chinese).
[92] 郑泽伟, 马云鹏, 关智元. 舰载机非线性着舰控制技术[M]. 北京:北京航空航天大学出版社, 2023: 109-134.
  ZHENG Z W, MA Y P, GUAN Z Y. Nonlinear landing control technology for carrier-based aircraft[M]. Beijing: Beihang University Press, 2023: 109-134 (in Chinese).
[93] REED S, STECK J E. Adaptive control for fault tolerant autonomous carrier recovery: AIAA-2018-0871[R]. Reston: AIAA, 2018.
[94] 罗飞, 张军红, 王博, 等. 基于直接升力与动态逆的舰尾流抑制方法[J]. 航空学报202142(12): 124770.
  LUO F, ZHANG J H, WANG B, et al. Air wake suppression method based on direct lift and nonlinear dynamic inversion control[J]. Acta Aeronautica et Astronautica Sinica202142(12): 124770 (in Chinese).
[95] NICHOLAS A. Automated carrier landing of an unmanned combat aerial vehicle using dynamic inversion[D]. Alabama: Department of the Air Force Air University, 2007: 19-30.
[96] 杨柳青, 甄子洋, 邢冬静, 等. 舰载无人机自动着舰自适应控制系统设计[J]. 飞行力学201836(6): 36-39.
  YANG L Q, ZHEN Z Y, XING D J, et al. Automatic carrier landing adaptive control system design of carrier-based UAV[J]. Flight Dynamics201836(6): 36-39 (in Chinese).
[97] 甄子洋, 陶钢, 江驹, 等. 无人机自动撞网着舰轨迹自适应跟踪控制[J]. 哈尔滨工程大学学报201738(12): 1922-1927.
  ZHEN Z Y, TAO G, JIANG J, et al. Adaptive tracking control of automatic net landing trajectory for carrier-based UAV[J]. Journal of Harbin Engineering University201738(12): 1922-1927 (in Chinese).
[98] ZHEN Z Y, YU C J, JIANG S Y, et al. Adaptive super-twisting control for automatic carrier landing of aircraft[J]. IEEE Transactions on Aerospace and Electronic Systems202056(2): 984-997.
[99] RAMESH S H, SUBBARAO K. Autonomous carrier landing system for the A/V-8B harrier like UAV[J]. IFAC-PapersOnLine201649(1): 290-295.
[100] HESS R A. Providing flight-path control bandwidth for carrier landings[J]. Journal of Aircraft201755(1): 406-409.
[101] 甄子洋, 预见控制理论及应用研究进展[J], 自动化学报201642(2): 172-188.
  ZHEN Z Y. Research development in preview control theory and applications[J]. Acta Automatica Sinica201642(2): 172-188 (in Chinese).
[102] ZHEN Z Y, JIANG S Y, MA K. Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering[J]. Aerospace science and technology201881: 99-107.
[103] BHATIA A K, JIANG J, KUMAR A, et al. Adaptive preview control with deck motion compensation for autonomous carrier landing of an aircraft[J]. International Journal of Adaptive Control and Signal Processing202135(5): 769-785.
[104] MISRA G, BAI X L. Output-feedback stochastic model predictive control for glideslope tracking during aircraft carrier landing[J]. Journal of Guidance, Control, and Dynamics201942(9): 2098-2105.
[105] LIU R D, JIANG J, LIU X, et al. Carrier aircraft landing control technology based on deep reinforcement learning[C]?∥2023 6th International Symposium on Autonomous Systems (ISAS). Piscataway: IEEE Press, 2023: 1-6.
[106] LUNGU M, DINU D A, CHEN M, et al. Inverse optimal control for autonomous carrier landing with disturbances[J]. Aerospace Science and Technology2023139: 108382.
[107] XU S T, TAN W Q, SUN L G. Modeling shared control system between human pilot and autopilot for a carrier-based aircraft landing task[J]. IEEE Transactions on Human-Machine Systems202555(1): 102-111.
[108] MCDONALD M, RICHARDS P W, WALKER M, et al. Carrier landing simulation using detailed aircraft and landing: AIAA-2020-1138[R]. Reston: AIAA, 2020.
[109] 许卫宝. 飞行员着舰的多层次模糊综合评价方法[J]. 中国舰船研究20138 (2): 17-21.
  XU W B. A comprehensive evaluation method for carrier landing based on fuzzy analytical hierarchy process[J]. Chinese Journal of Ship Research20138 (2): 17-21 (in Chinese).
[110] LI Y, YIN H T. An effective method for performance evaluation of ACLS based on improved grey analytic hierarchy[J]. Journal of Measurement Science and Instrumentation202213 (2): 166-172.
[111] LIU T, GU B, WU Z H, et al. Research on carrier-based aircraft glide slope rating method based on cloud model[J]. Journal of Physics: Conference Series. IOP Publishing, 20252977(1): 012111.
[112] 马捷. 基于MBSE方法的全自动着舰系统(ACLS)安全性分析方法研究[J]. 航空标准化与质量2023, (4): 37-43.
  MA J. A study on safety analysis method for automatic carrier landing system (ACLS) based on MBSE approach[J]. Aeronautic Standardization & Quality2023, (4): 37-43 (in Chinese).
[113] ZHOU D, ZHOU J L, ZHANG M J, et al. Deep learning for unmanned aerial vehicles landing carrier in different conditions[C]?∥2017 18th International Conference on Advanced Robotics (ICAR). Piscataway: IEEE Press, 2017: 469-475.
[114] 焦鑫. 舰载机着舰环境与复飞决策技术研究[D]. 南京: 南京航空航天大学, 2012: 60-64.
  JIAO X. Research on carrier-based aircraft landing condition and wave-off decision technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 60-64 (in Chinese).
[115] 杜洁. 舰载机复飞决策及操纵策略研究[D]. 南京: 南京航空航天大学, 2015: 39-45.
  DU J. Research on carrier-based aircraft wave-off decision and control strategy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 39-45 (in Chinese).
[116] ZHANG L, WANG L, XING Z, et al. Research on wave-off decision and elevator manipulation optimization of carrier-based UAV[C]?∥International Conference on Guidance, Navigation and Control. Singapore: Springer Nature Singapore, 2022: 5342-5354.
[117] 崔凯凯, 韩维, 刘玉杰, 等. 基于DM-DSC的舰载机着舰自动复飞控制算法[J]. 北京航空航天大学学报202349 (4): 900-912.
  CUI K K, HAN W, LIU Y J, et al. Automate wave-of control algorithm for carrier aircraft based on DM-DSC[J]. Journal of Beijing University of Aeronautics and Astronautics202349(4): 900-912 (in Chinese).
[118] 段萍萍, 聂宏, 魏小辉. 飞机触舰后逃逸复飞性能分析[J]. 中国机械工程201425(9): 1225-1231.
  DUAN P P, NIE H, WEI X H. Bolting and go-around performance analysis of carrier-based aircraft[J]. Mechanical Engineering201425(9): 1225-1231 (in Chinese).
[119] 林佳铭, 吴光辉, 王立新, 等. 舰载机安全逃逸复飞的参数适配包线[J]. 北京航空航天大学学报201945(9): 1777-1786.
  LIN J M, WU G H, WANG L X, et al. Parameter suitability envelope for safety bolter of a carrier based aircraft [J]. Journal of Beijing University of Aeronautics and Astronautics201945(9): 1777-1786 (in Chinese).
[120] 彭沛. 基于Simulink/Fluent舰载机触舰逃逸协同仿真[D]. 哈尔滨: 哈尔滨工程大学, 2022: 41-45.
  PENG P. Cooperative Simulation of Ship-based Aircraft Contact and Escape based on Simulink/Fluent[D]. Harbin: Harbin Engineering University, 2022: 41-45 (in Chinese).
[121] 甄子洋, 江驹, 孙绍山, 等. 无人机集群作战协同控制与决策[M]. 北京: 国防工业出版社, 2022: 2-4.
  ZHEN Z Y, JIANG J, SUN S S, et al. Unmanned aerial vehicle swarm cooperative control and decision-making for combat operations[M]. Beijing: National Defence Industry Press, 2022: 2-4 (in Chinese).
[122] 甄子洋, 江驹, 宋闯, 等. 无人飞行器制导控制与集群智能[M]. 北京: 科学出版社, 2024: 1-5.
  ZHEN Z Y, JIANG J, SONG C, et al. UAV Guidance, Control, and Swarm Intelligence[M]. Beijing: Science Press, 2024: 1-5 (in Chinese).
文章导航

/