[1] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(08): 2507-2528.
ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aero-nautica et Astronautica Sinica, 2015, 36(08): 2507-2528 (in Chinese).
[2] 韩忠华, 钱战森, 乔建领. 声爆预测与低声爆设计方法[M]. 北京: 科学出版社, 2022.
HAN Z H, QIAN Z S, QIAO J L. Sonic boom predic-tion and low-boom design method[M]. Beijing: Science Press, 2022. (in Chinese).
[3] 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报,2019, 37(4): 601-619.
QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4): 601-619(in Chinese).
[4] 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635.
HAN Z H, QIAO J L, DING Y L, et al. Key technolo-gies for next-generation environmentally-friendly su-per-sonic transport aircraft: a review of recent pro-gress[J]. Acta Aerodynamica Sinica, 2019, 37(04): 620-635 (in Chinese).
[5] DOEBLER W J, WILSON S R, LOUBEAU A, et al. Simulation and regression modeling of NASA’s X-59 low-boom carpets across America[J]. Journal of Aircraft, 2023, 60(2): 509-520.
[6] 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022, 43(12): 77-100.
ZHANG L W, SONG W P, HAN Z H, et al. Recent pro-gress of sonic boom generation, propagation, and miti-gation mechanism[J]. Acta Aeronauticaet et Astro-nautica Sinica, 2022,43(12):77-100(in Chinese).
[7] 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(02): 20-46.
DING Y L, HAN Z H, QIAO J L, et al. Research pro-gress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft [J]. Acta Aeronautica et Astronautica Sinica. 2023. 44(02): 20-46(in Chinese).
[8] MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom: Six decades of research: NASA SP-622 [R]. Hampton: NASA, 2014.
[9] WHITHAM G B. The flow pattern of a supersonic pro-ject[J]. Communications on Pure and Applied Mathemat-ics, 1952, 5(3): 301-347.
[10] WALKDEN F. The shock pattern of a wing-body combi-nation, far from the flight path[J]. Aeronautical Quarterly, 1958, IX(2):164-194.
[11] CHEUNG S H, EDWARDS T A, LAWRENCE S L. Application of computational fluid dynamics to sonic boom near- and mid-field prediction[J]. Journal of Air-craft, 1992, 29(5): 920-926.
[12] Ma B P, Wang G, Ren J, et al. Near-field sonic-boom prediction and analysis with hybrid grid navier–stokes solver[J]. Journal of Aircraft, 2018, 55(5): 1890-1904.
[13] GEORGE R, ANDERSON M. AFTOSMIS M. Cart3D simulations for the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 896-910.
[14] RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Air-craft, 2011, 48(4): 1245-1253.
[15] LI W, GEISELHART K. Multidisciplinary design opti-mization of low-boom supersonic aircraft with mission constraints[J]. AIAA Journal, 2021, 59(1): 165-179.
[16] ORDAZ I, LI W. Using CFD surface solutions to shape sonic boom signatures propagated from off-body pres-sure: AIAA-2013-2660[R]. Reston: AIAA, 2013.
[17] JONES L B. Lower bounds for the pressure jump of the bow shock of a supersonic transport[J]. Aeronautical Quarterly, 1970, 21(1): 1-17.
[18] SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature, 1969, 221(5181): 651-653.
[19] GEORGE A R, SEEBASS R. Sonic boom minimization including both front and rear shocks[J]. AIAA Journal, 1971, 9(10): 2091-2093.
[20] DARDEN C M. Sonic-boom minimization with nose-bluntness relaxation: NASA-TP-1438[R]. Hampton: NASA, 1979.
[21] NADARAJAH S K, JAMESON A, ALONSO J. Ad-joint-based sonic boom reduction for wing-body config-urations in supersonic flow[J]. Canadian Aeronautics and Space Journal, 2005, 51(4): 187-199.
[22] NEMEC M, AFTOSMIS M. Parallel adjoint framework for aerodynamic shape optimization of component-based geometry: AIAA-2011-1249[R]. Reston: AIAA, 2011.
[23] LI W, SHIELDS E. Generation of parametric equivalent-area targets for design of low-boom supersonic concepts: AIAA-2011-462[R]. Reston: AIAA, 2011.
[24] LI W, RALLABHANDI S K. Inverse design of low-boom supersonic concepts using reversed equivalent-area targets[J]. Journal of Aircraft, 2014, 51(1): 29-36.
[25] HAN Z H, QIAO J L, ZHANG L W, et al. Recent pro-gress of efficient low-boom design and optimization methods[J]. Progress in Aerospace Sciences, 2024, 146(1): 101007.
[26] WINTZER M, ORDAZ I, FENBERT J W. Under-track CFD-based shape optimization for a low-boom demon-strator concept: AIAA-2015-2260[R]. Reston: AIAA, 2015.
[27] UENO A, KANAMORI M, MAKINO Y. Multi-fidelity low-boom design based on near-field pressure signature: AIAA-2016-2033[R]. Reston: AIAA, 2016.
[28] LI J, WRAY T J, AGARWAL R K. Shape optimization of supersonic bodies to reduce sonic boom signature: AIAA-2016-3432[R]. Reston: AIAA-2016.
[29] RALLABHANDI S K, NIELSEN E J, DISKIN B, Son-ic-boom mitigation through aircraft design and adjoint methodology[J]. Journal of Aircraft, 2014, 51(2): 502-510.
[30] JIM T M, FAZA G A, PALAR P S, et al. A Multiobjec-tive Surrogate-Assisted Optimisation and Exploration of Low-boom Supersonic Transport Planforms[J]. Aero-space Science and Technology, 2022, 128: 1-21.
[31] AFTOSMIS M J, Nemec M, Cliff S E. Adjoint-based low-boom design with Cart3D: AIAA-2011-3500[R]. Reston: AIAA, 2011.
[32] CHOI S. Multi-fidelity and multi-disciplinary design optimization of supersonic business jets[M]. Stanford University, 2006.
[33] ORDAZ I, LI W. Integration of off-track sonic boom analysis for supersonic aircraft conceptual design[J]. Journal of Aircraft, 2014, 51(1): 23-28.
[34] PLOTKIN K J. Sonic boom shaping in three dimensions: AIAA-2009-3387[R]. Reston, VA: AIAA, 2009.
[35] GEORGE A R. Reduction of sonic boom by azimuthal redistribution of overpressure[J]. AIAA Journal, 1969, 7(2): 291-298.
[36] ORDAZ I, WINTZER M, RALLABHANDI S K. Full-carpet design of a low-boom demonstrator concept: AIAA-2015-2261[R]. Reston, VA: AIAA, 2021.
[37] UENO A, KANAMORI M, MAKINO Y. Robust low-boom design based on near-field pressure signature in whole boom carpet[J]. Journal of Aircraft, 2017, 54(3): 918-925.
[38] UENO A, MAKINO Y. Robust low-boom design in primary boom carpet: AIAA-2021-1270[R]. Reston: AIAA, 2021.
[39] KIRZ J. Surrogate-based low-boom low-drag nose de-sign for the JAXA S4 supersonic airliner: AIAA-2022-0706[R]. Reston: AIAA, 2022.
[40] 冯晓强, 李占科, 宋笔锋. 超声速客机低音爆布局反设计技术研究[J]. 航空学报, 2011, 32(11): 1980-1986.
FENG X Q, LI Z K, SONG B F. A research on inverse design method of a lower sonic boom supersonic aircraft configuration[J]. Acta Aeronauticaet et Astro-nautica Sinica, 2011, 32(11): 1980-1986(in Chinese).
[41] DING Y L, HAN Z H, QIAO J L, et al. Inverse design method for low-boom supersonic transport with lift con-straint[J]. AIAA Journal, 2023, 61(7): 2840-2853.
[42] 丁玉临. 超声速民机低声爆布局设计方法研究[D]. 西安: 西北工业大学, 2023.
DING Y L. Low-boom configuration design method for supersonic transport aircraft [D] Northwestern Polytech-nical University, 2023.
[43] 李军府, 陈晴, 王伟, 等. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613-629613.
LI J F, CHEN Q, WANG W, et al. Design of low sonic boom high efficiency layout for advanced supersonic civ-il aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613-629613(in chinese).
[44] 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J].航空学报,2019,40(05):51-61.
HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122505-122505.
[45] 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(05): 67-80.
QIAO J L, HAN Z H, SONG W P. An efficient surro-gate-based global optimization for low sonic boom de-sign[J]. Acta Aeronauticaet et Astronautica Sinica, 2018, 39(05): 67-80(in Chinese).
[46] ZHANG L W, HAN Z H, QIAO J L, et al. Effect of longitudinal lift distribution on sonic boom of a canard-wing-stabilator-body configuration[J]. Chinese Journal of Aeronautics, 2023, 36(9): 92-108.
[47] 陈晴, 韩忠华, 杨瀚, 等. 机翼上反角对超声速民机全声爆毯声爆特性影响研究[J]. 气动研究与试验, 2024, 2(01): 50-58.
CHEN Q, HAN Z H, YANG H, et al. Research on the effect of wing dihedral full-carpet sonic boom[J]. Aero-dynamic Research & Experiment, 2024, 2(01): 50-58(in chinese).
[48] 马博平, 王刚, 雷知锦, 等. 网格对声爆近场预测影响的数值研究[J]. 西北工业大学学报, 2018, 36(5): 865-874.
MA B P, WANG G, LEI Z J, et al. Numerical investiga-tion of influence of mesh property in nearfield sonic boom prediction. Journal of Northwestern Polytechnical University, 2018, 36(5): 865-874.
[49] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. The University of Texas at Austin, 1995.
[50] STEVENS S S. Perceived level of noise by Mark VII and decibels (E). The Journal of the Acoustical Society of America, 1972, 51(2B): 575-601.
[51] 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(04): 663-674.
QIAO J L, HAN Z H, SONG W P. Sonic boom predic-tion method for supersonic transports based on aug-mented Burgers equation[J]. Acta Aeronauticaet et As-tronautica Sinica, 2018, 39(05): 67-80(in Chinese).
[52] QIAO J L, HAN Z H, DING Y L, et al. Far-field sonic boom prediction considering atmospheric turbulence ef-fects: An improved approach[J]. Chinese Journal of Aer-onautics, 2022, 35(9): 208-225.
[53] PARK M A, NEMEC M. Nearfield summary and statis-tical analysis of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 851-875.
[54] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.
HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress. Acta Aeronautica et Astronautica Sinica, 2016,37(11): 3197-3225(in Chinese).
[55] HAN Z H. SurroOpt: A generic surrogate-based optimi-zation code for aerodynamic and multidisciplinary de-sign[C] //30th ICAS, 2016.