一种面向超声速民机低声爆布局的全声爆毯优化设计方法(备注:超声速民机专刊)

  • 陈晴 ,
  • 韩忠华 ,
  • 张科施 ,
  • 乔建领 ,
  • 丁玉临 ,
  • 宋文萍 ,
  • 李军府 ,
  • 谢露 ,
  • 艾俊强
展开
  • 1. 西北工业大学航空学院
    2. 西北工业大学
    3. 中航工业第一飞机设计研究院
    4. 航空工业第一飞机设计研究院

收稿日期: 2025-02-27

  修回日期: 2025-06-16

  网络出版日期: 2025-06-16

基金资助

国家自然科学基金;国家自然科学基金;国家重点研发计划

A Full-carpet Design Optimization Method for Low-boom Supersonic Transport Configuration

  • CHEN Qing ,
  • HAN Zhong-Hua ,
  • ZHANG Ke-Shi ,
  • QIAO Jian-Ling ,
  • DING Yu-Lin ,
  • SONG Wen-Ping ,
  • LI Jun-Fu ,
  • XIE Lu ,
  • AI Jun-Qiang
Expand

Received date: 2025-02-27

  Revised date: 2025-06-16

  Online published: 2025-06-16

摘要

声爆不达标是发展新一代超声速民机亟待突破的瓶颈问题。现有的低声爆设计方法仅针对正下方或侧向单一方位角,其声爆降低往往导致其他方向声爆增强,使得声爆仍不达标。针对该问题,本文基于“近场CFD数值模拟结合远场广义Burgers方程”的高可信度声爆预测方法,提出了全声爆毯声爆强度(full-carpet sonic boom loudness, FBL)这一物理量。FBL通过对声爆毯内的感觉声压级分布进行积分,综合考虑不同方位角声爆强度与影响范围,从而建立全声爆毯声爆特性的度量。基于FBL,在代理优化框架下发展了一种全声爆毯低声爆设计方法。将该方法应用于某超声速民机低声爆布局设计,结果表明:全声爆毯内所有方位角的声爆强度均降低,感觉声压级最大值降低到81.16分贝,最小值降低至77.57分贝。流场分析显示:设计的机翼上反分布改善了后体波系结构,削弱了远场尾激波强度,减小了地面信号的中高频段声能量。相较于现有单一方位角低声爆设计方法,本文方法能在声爆毯更大范围内获得更低的感觉声压级分布,具有更优的降低声爆效果。论文研究可为超声速民机布局低声爆设计提供有力手段。

本文引用格式

陈晴 , 韩忠华 , 张科施 , 乔建领 , 丁玉临 , 宋文萍 , 李军府 , 谢露 , 艾俊强 . 一种面向超声速民机低声爆布局的全声爆毯优化设计方法(备注:超声速民机专刊)[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31909

Abstract

Reducing the sonic boom to a community-acceptable level across the full carpet is a significant challenge for the development of next-generation supersonic transport (SST). Existing low-boom design methods focus only on one azimuth angle, leading to an unacceptable boom at other locations across the boom carpet. To solve this problem, this paper formulates a metric termed full-carpet boom loudness (FBL) based on CFD simulation combined with the augmented Burgers equation. FBL can account for both the contribution of ground loudness and spatial influ-ence area at different azimuth angles. By integrating the FBL and surrogate-based optimization framework, a full-carpet low-boom design optimization method is proposed. Then, the proposed method is applied to the low-boom design of an SST configuration. Results show that sonic booms at all azimuth angles are mitigated across the full carpet, where the maximum loudness is reduced to 81.16 PLdB while the minimum loudness is reduced to 77.57 PLdB. The shock wave pattern of designed configuration is improved and tail shocks of far-field signatures are mit-igated. Compared to the existing method focusing only on one azimuth angle, the proposed method outperforms in boom reduction, obtaining a lower ground loudness distribution. This research may support the low-boom design of SST configurations.

参考文献

[1] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(08): 2507-2528.
ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aero-nautica et Astronautica Sinica, 2015, 36(08): 2507-2528 (in Chinese).
[2] 韩忠华, 钱战森, 乔建领. 声爆预测与低声爆设计方法[M]. 北京: 科学出版社, 2022.
HAN Z H, QIAN Z S, QIAO J L. Sonic boom predic-tion and low-boom design method[M]. Beijing: Science Press, 2022. (in Chinese).
[3] 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报,2019, 37(4): 601-619.
QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4): 601-619(in Chinese).
[4] 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635.
HAN Z H, QIAO J L, DING Y L, et al. Key technolo-gies for next-generation environmentally-friendly su-per-sonic transport aircraft: a review of recent pro-gress[J]. Acta Aerodynamica Sinica, 2019, 37(04): 620-635 (in Chinese).
[5] DOEBLER W J, WILSON S R, LOUBEAU A, et al. Simulation and regression modeling of NASA’s X-59 low-boom carpets across America[J]. Journal of Aircraft, 2023, 60(2): 509-520.
[6] 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022, 43(12): 77-100.
ZHANG L W, SONG W P, HAN Z H, et al. Recent pro-gress of sonic boom generation, propagation, and miti-gation mechanism[J]. Acta Aeronauticaet et Astro-nautica Sinica, 2022,43(12):77-100(in Chinese).
[7] 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(02): 20-46.
DING Y L, HAN Z H, QIAO J L, et al. Research pro-gress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft [J]. Acta Aeronautica et Astronautica Sinica. 2023. 44(02): 20-46(in Chinese).
[8] MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom: Six decades of research: NASA SP-622 [R]. Hampton: NASA, 2014.
[9] WHITHAM G B. The flow pattern of a supersonic pro-ject[J]. Communications on Pure and Applied Mathemat-ics, 1952, 5(3): 301-347.
[10] WALKDEN F. The shock pattern of a wing-body combi-nation, far from the flight path[J]. Aeronautical Quarterly, 1958, IX(2):164-194.
[11] CHEUNG S H, EDWARDS T A, LAWRENCE S L. Application of computational fluid dynamics to sonic boom near- and mid-field prediction[J]. Journal of Air-craft, 1992, 29(5): 920-926.
[12] Ma B P, Wang G, Ren J, et al. Near-field sonic-boom prediction and analysis with hybrid grid navier–stokes solver[J]. Journal of Aircraft, 2018, 55(5): 1890-1904.
[13] GEORGE R, ANDERSON M. AFTOSMIS M. Cart3D simulations for the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 896-910.
[14] RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Air-craft, 2011, 48(4): 1245-1253.
[15] LI W, GEISELHART K. Multidisciplinary design opti-mization of low-boom supersonic aircraft with mission constraints[J]. AIAA Journal, 2021, 59(1): 165-179.
[16] ORDAZ I, LI W. Using CFD surface solutions to shape sonic boom signatures propagated from off-body pres-sure: AIAA-2013-2660[R]. Reston: AIAA, 2013.
[17] JONES L B. Lower bounds for the pressure jump of the bow shock of a supersonic transport[J]. Aeronautical Quarterly, 1970, 21(1): 1-17.
[18] SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature, 1969, 221(5181): 651-653.
[19] GEORGE A R, SEEBASS R. Sonic boom minimization including both front and rear shocks[J]. AIAA Journal, 1971, 9(10): 2091-2093.
[20] DARDEN C M. Sonic-boom minimization with nose-bluntness relaxation: NASA-TP-1438[R]. Hampton: NASA, 1979.
[21] NADARAJAH S K, JAMESON A, ALONSO J. Ad-joint-based sonic boom reduction for wing-body config-urations in supersonic flow[J]. Canadian Aeronautics and Space Journal, 2005, 51(4): 187-199.
[22] NEMEC M, AFTOSMIS M. Parallel adjoint framework for aerodynamic shape optimization of component-based geometry: AIAA-2011-1249[R]. Reston: AIAA, 2011.
[23] LI W, SHIELDS E. Generation of parametric equivalent-area targets for design of low-boom supersonic concepts: AIAA-2011-462[R]. Reston: AIAA, 2011.
[24] LI W, RALLABHANDI S K. Inverse design of low-boom supersonic concepts using reversed equivalent-area targets[J]. Journal of Aircraft, 2014, 51(1): 29-36.
[25] HAN Z H, QIAO J L, ZHANG L W, et al. Recent pro-gress of efficient low-boom design and optimization methods[J]. Progress in Aerospace Sciences, 2024, 146(1): 101007.
[26] WINTZER M, ORDAZ I, FENBERT J W. Under-track CFD-based shape optimization for a low-boom demon-strator concept: AIAA-2015-2260[R]. Reston: AIAA, 2015.
[27] UENO A, KANAMORI M, MAKINO Y. Multi-fidelity low-boom design based on near-field pressure signature: AIAA-2016-2033[R]. Reston: AIAA, 2016.
[28] LI J, WRAY T J, AGARWAL R K. Shape optimization of supersonic bodies to reduce sonic boom signature: AIAA-2016-3432[R]. Reston: AIAA-2016.
[29] RALLABHANDI S K, NIELSEN E J, DISKIN B, Son-ic-boom mitigation through aircraft design and adjoint methodology[J]. Journal of Aircraft, 2014, 51(2): 502-510.
[30] JIM T M, FAZA G A, PALAR P S, et al. A Multiobjec-tive Surrogate-Assisted Optimisation and Exploration of Low-boom Supersonic Transport Planforms[J]. Aero-space Science and Technology, 2022, 128: 1-21.
[31] AFTOSMIS M J, Nemec M, Cliff S E. Adjoint-based low-boom design with Cart3D: AIAA-2011-3500[R]. Reston: AIAA, 2011.
[32] CHOI S. Multi-fidelity and multi-disciplinary design optimization of supersonic business jets[M]. Stanford University, 2006.
[33] ORDAZ I, LI W. Integration of off-track sonic boom analysis for supersonic aircraft conceptual design[J]. Journal of Aircraft, 2014, 51(1): 23-28.
[34] PLOTKIN K J. Sonic boom shaping in three dimensions: AIAA-2009-3387[R]. Reston, VA: AIAA, 2009.
[35] GEORGE A R. Reduction of sonic boom by azimuthal redistribution of overpressure[J]. AIAA Journal, 1969, 7(2): 291-298.
[36] ORDAZ I, WINTZER M, RALLABHANDI S K. Full-carpet design of a low-boom demonstrator concept: AIAA-2015-2261[R]. Reston, VA: AIAA, 2021.
[37] UENO A, KANAMORI M, MAKINO Y. Robust low-boom design based on near-field pressure signature in whole boom carpet[J]. Journal of Aircraft, 2017, 54(3): 918-925.
[38] UENO A, MAKINO Y. Robust low-boom design in primary boom carpet: AIAA-2021-1270[R]. Reston: AIAA, 2021.
[39] KIRZ J. Surrogate-based low-boom low-drag nose de-sign for the JAXA S4 supersonic airliner: AIAA-2022-0706[R]. Reston: AIAA, 2022.
[40] 冯晓强, 李占科, 宋笔锋. 超声速客机低音爆布局反设计技术研究[J]. 航空学报, 2011, 32(11): 1980-1986.
FENG X Q, LI Z K, SONG B F. A research on inverse design method of a lower sonic boom supersonic aircraft configuration[J]. Acta Aeronauticaet et Astro-nautica Sinica, 2011, 32(11): 1980-1986(in Chinese).
[41] DING Y L, HAN Z H, QIAO J L, et al. Inverse design method for low-boom supersonic transport with lift con-straint[J]. AIAA Journal, 2023, 61(7): 2840-2853.
[42] 丁玉临. 超声速民机低声爆布局设计方法研究[D]. 西安: 西北工业大学, 2023.
DING Y L. Low-boom configuration design method for supersonic transport aircraft [D] Northwestern Polytech-nical University, 2023.
[43] 李军府, 陈晴, 王伟, 等. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613-629613.
LI J F, CHEN Q, WANG W, et al. Design of low sonic boom high efficiency layout for advanced supersonic civ-il aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613-629613(in chinese).
[44] 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J].航空学报,2019,40(05):51-61.
HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122505-122505.
[45] 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(05): 67-80.
QIAO J L, HAN Z H, SONG W P. An efficient surro-gate-based global optimization for low sonic boom de-sign[J]. Acta Aeronauticaet et Astronautica Sinica, 2018, 39(05): 67-80(in Chinese).
[46] ZHANG L W, HAN Z H, QIAO J L, et al. Effect of longitudinal lift distribution on sonic boom of a canard-wing-stabilator-body configuration[J]. Chinese Journal of Aeronautics, 2023, 36(9): 92-108.
[47] 陈晴, 韩忠华, 杨瀚, 等. 机翼上反角对超声速民机全声爆毯声爆特性影响研究[J]. 气动研究与试验, 2024, 2(01): 50-58.
CHEN Q, HAN Z H, YANG H, et al. Research on the effect of wing dihedral full-carpet sonic boom[J]. Aero-dynamic Research & Experiment, 2024, 2(01): 50-58(in chinese).
[48] 马博平, 王刚, 雷知锦, 等. 网格对声爆近场预测影响的数值研究[J]. 西北工业大学学报, 2018, 36(5): 865-874.
MA B P, WANG G, LEI Z J, et al. Numerical investiga-tion of influence of mesh property in nearfield sonic boom prediction. Journal of Northwestern Polytechnical University, 2018, 36(5): 865-874.
[49] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. The University of Texas at Austin, 1995.
[50] STEVENS S S. Perceived level of noise by Mark VII and decibels (E). The Journal of the Acoustical Society of America, 1972, 51(2B): 575-601.
[51] 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(04): 663-674.
QIAO J L, HAN Z H, SONG W P. Sonic boom predic-tion method for supersonic transports based on aug-mented Burgers equation[J]. Acta Aeronauticaet et As-tronautica Sinica, 2018, 39(05): 67-80(in Chinese).
[52] QIAO J L, HAN Z H, DING Y L, et al. Far-field sonic boom prediction considering atmospheric turbulence ef-fects: An improved approach[J]. Chinese Journal of Aer-onautics, 2022, 35(9): 208-225.
[53] PARK M A, NEMEC M. Nearfield summary and statis-tical analysis of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 851-875.
[54] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.
HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress. Acta Aeronautica et Astronautica Sinica, 2016,37(11): 3197-3225(in Chinese).
[55] HAN Z H. SurroOpt: A generic surrogate-based optimi-zation code for aerodynamic and multidisciplinary de-sign[C] //30th ICAS, 2016.
文章导航

/