大型运载火箭加筋圆柱壳混合整数序列近似优化方法
收稿日期: 2024-08-22
修回日期: 2024-09-13
录用日期: 2024-10-18
网络出版日期: 2024-11-06
基金资助
国家自然科学基金(52405301);湖南省自然科学基金(2024JJ6453)
Mixed-integer sequential approximate optimization method for stiffened cylindrical shells in large launch vehicles
Received date: 2024-08-22
Revised date: 2024-09-13
Accepted date: 2024-10-18
Online published: 2024-11-06
Supported by
National Natural Science Foundation of China(52405301);Hunan Provincial Natural Science Foundation of China(2024JJ6453)
针对大型运载火箭加筋圆柱壳轻量化设计面临的混合整数变量多、耦合强、计算成本高、优化收敛性差等问题,提出了一种基于探索/开发竞争并行采样的序列近似优化方法(SAOCPS)。该方法通过建立加筋圆柱壳轴压承载能力的增广径向基函数近似模型以提高后屈曲分析效率,并基于双精英种群进化的开发采样策略挖掘潜在最优区域,提升算法局部寻优性能。根据离散-连续变量低维投影特点,确定探索样本新增水平,采用元素交换-概率跃迁相结合的排列优化方法进行均匀性改进,实现探索样本对离散-连续设计空间的均匀覆盖,提升算法全局寻优性能。利用性能增益驱动的探索/开发竞争采样机制,平衡算法对设计空间的探索/开发力度,引导高维高耗时混合整数优化过程快速收敛。在大直径大载荷加筋圆柱壳轻量化设计应用中,本文方法在初始样本数量大幅缩减90%以上时,仍获得了与其他研究工作相当的优化结果,且比经典PoF优化方法进一步减重了279.8 kg,证明了所提方法的有效性和工程适用性。
王志祥 , 雷勇军 , 张大鹏 , 崔辉如 . 大型运载火箭加筋圆柱壳混合整数序列近似优化方法[J]. 航空学报, 2025 , 46(10) : 230189 -230189 . DOI: 10.7527/S1000-6893.2024.30189
A Sequential Approximate Optimization method based on exploitation/exploration Competing Parallel Sampling strategy (SAOCPS) is proposed to conquer the difficulties of coupling multi-mixed-integer variables, high computational cost, and poor optimization convergence in the lightweight design of stiffened cylindrical shells for large launch vehicles. In this method, the Augmented Radial Basis Function (ARBF) approximate model of axial load-carrying capacity is constructed to improve the efficiency of post-buckling analysis for the stiffened cylindrical shells. A dual-elite population evolution-based exploitation strategy is developed to exploit the information in promising regions, thereby enhancing the local optimization performance of SAOCPS. Meanwhile, the new levels are determined according to the one-dimensional projection characteristics of discrete and continuous variables. The combination of element exchange and probabilistic transition is employed to enhance the performance of the permutation optimization method, achieving a uniform coverage of the exploration sample points to the discrete-continuous design space and enhancing the global optimization performance of SAOCPS. Ultimately, the exploration/exploitation competitive mechanism driven by performance gains is introduced for the balance between exploration and exploitation, thereby guiding the rapid convergence of the high-dimensional and time-consuming mixed-integer optimization problems. In applying the lightweight design of large-diameter stiffened cylindrical shells, the optimization results of SAOCPS are still comparable to those of the literature work, even if the initial sample points are greatly reduced by more than 90%. Furthermore, the weight is reduced by 279.8 kg compared with the classical PoF optimization method. The effectiveness and superiority of the proposed method are validated for the prospect of the engineering applications.
1 | 王志祥, 顾名坤, 雷勇军, 等. 大型运载火箭助推器超静定捆绑方案研究[J]. 振动与冲击, 2020, 39(4): 129-135. |
WANG Z X, GU M K, LEI Y J, et al. A study on the scheme of large hyper-static strap-on launch vehicles[J]. Journal of Vibration and Shock, 2020, 39(4): 129-135 (in Chinese). | |
2 | 龙乐豪, 郑立伟. 关于重型运载火箭若干问题的思考 [J]. 宇航总体技术, 2017, 1(1): 8-12. |
LONG L H, ZHEN L W. Consideration of some issues on the heavy launch vehicle [J]. Astronautical Systems Engineering Technology, 2017, 1(1): 8-12 (in Chinese). | |
3 | 王志祥, 雷勇军, 段静波, 等. 重型运载火箭集中力扩散舱段多区域联合设计与优化 [J]. 航空学报, 2021, 43(3): 225135. |
WANG Z X, LEI Y J, DUAN J B, et al. Multi-region integrated design and optimization of the concentrated-force diffusion component in heavy-lift launch vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2021, 43(3): 225135 (in Chinese). | |
4 | 王博, 郝鹏, 田阔, 等. 航空航天结构轻量化设计与实验方法研究进展[J]. 宇航学报, 2023, 44(4): 596-606. |
WANG B, HAO P, TIAN K, et al. Advances in lightweight design and experimental methods for aerospace structures[J]. Journal of Astronautics, 2023, 44(4): 596-606 (in Chinese). | |
5 | 王国辉,曾杜娟,刘观日,等.中国下一代运载火箭结构技术发展方向与关键技术分析[J].宇航总体技术,2021,5(5):1-11. |
WANG G H, ZENG D J, LIU G R, et al. Development direction and key technology analysis for China's next generation launch vehicles structure [J]. Astronautical Systems Engineering Technology, 2021, 5(5): 1-11 (in Chinese). | |
6 | 程耿东, 徐亮. 周期材料与结构等效性质预测与优化[M]. 北京: 科学出版社, 2023. |
CHENG G D, XU L. Prediction and optimization of equivalent properties of periodic materials and structures[M]. Beijing: Science Press, 2023 (in Chinese). | |
7 | KIDANE S, LI G Q, HELMS J, et al. Buckling load analysis of grid stiffened composite cylinders?[J]. Composites Part B: Engineering, 2003, 34(1): 1-9. |
8 | MARTINEZ O A, SANKAR B V, HAFTKA R T, et al. Micromechanical analysis of composite corrugated-core sandwich panels for integral thermal protection systems[J]. AIAA Journal, 2007, 45(9): 2323-2336. |
9 | LEE C Y, YU W B. Homogenization and dimensional reduction of composite plates with in-plane heterogeneity[J]. International Journal of Solids and Structures, 2011, 48(10): 1474-1484. |
10 | CHENG G D, CAI Y W, XU L. Novel implementation of homogenization method to predict effective properties of periodic materials[J]. Acta Mechanica Sinica, 2013, 29(4): 550-556. |
11 | CAI Y W, XU L, CHENG G D. Novel numerical implementation of asymptotic homogenization method for periodic plate structures[J]. International Journal of Solids and Structures, 2014, 51(1): 284-292. |
12 | 王博, 田阔, 郑岩冰, 等. 超大直径网格加筋筒壳快速屈曲分析方法 [J]. 航空学报, 2017, 38(2): 220379. |
WANG B, TIAN K, ZHENG Y B, et al. A Rapid buckling analysis method for large-scale grid-stiffened cylindrical shells?[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 220379 (in Chinese). | |
13 | HAO P, WANG B, TIAN K, et al. Efficient optimization of cylindrical stiffened shells with reinforced cutouts by curvilinear stiffeners?[J]. AIAA Journal, 2016, 54(4): 1350-1363. |
14 | WANG B, TIAN K, ZHAO H X, et al. Multilevel optimization framework for hierarchical stiffened shells accelerated by adaptive equivalent strategy[J]. Applied Composite Materials, 2017, 24(3): 575-592. |
15 | 王志祥, 武泽平, 王婕, 等. 大型运载火箭加筋柱壳近似建模方法[J]. 宇航学报, 2020, 41(10): 1267-1279. |
WANG Z X, WU Z P, WANG J, et al. Approximation modeling method for cylindrical stiffened shells in large launch vehicles?[J]. Journal of Astronautics, 2020, 41(10): 1267-1279 (in Chinese). | |
16 | 王志祥, 雷勇军, 张大鹏, 等. 考虑加工误差的大型运载火箭框桁加强薄壁圆柱壳优化设计[J]. 机械工程学报, 2021, 57(18): 190-203. |
WANG Z X, LEI Y J, ZHANG D P, et al. Optimization of cylindrical stiffened shells in large launch vehicles considering manufacturing tolerance[J]. Journal of Mechanical Engineering, 2021, 57(18): 190-203 (in Chinese). | |
17 | HAO P, WANG B, TIAN K, et al. Integrated optimization of hybrid-stiffness stiffened shells based on sub-panel elements[J]. Thin-Walled Structures, 2016, 103: 171-182. |
18 | HAO P, WANG B, LI G. Surrogate-based optimum design for stiffened shells with adaptive sampling[J]. AIAA Journal, 2012, 50(11): 2389-2407. |
19 | SINGH K, KAPANIA R K. Accelerated optimization of curvilinearly stiffened panels using deep learning?[J]. Thin-Walled Structures, 2021, 161: 107418. |
20 | TIAN K, LI Z C, HUANG L, et al. Enhanced variable-fidelity surrogate-based optimization framework by Gaussian process regression and fuzzy clustering?[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 366: 113045. |
21 | TIAN K, LI Z C, MA X T, et al. Toward the robust establishment of variable-fidelity surrogate models for hierarchical stiffened shells by two-step adaptive updating approach?[J]. Structural and Multidisciplinary Optimization, 2020, 61(4): 1515-1528. |
22 | 李增聪, 田阔, 黄蕾, 等. 面向变刚度复合材料筒壳高效屈曲分析的变保真度迁移学习模型[J]. 复合材料学报, 2022, 39(5): 2430-2440. |
LI Z C, TIAN K, HUANG L, et al. Variable-fidelity transfer learning model for efficient buckling analysis of variable stiffness composite cylindrical shells?[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2430-2440 (in Chinese). | |
23 | 李增聪, 田阔, 赵海心. 面向多级加筋壳的高效变保真度代理模型[J]. 航空学报, 2020, 41(7): 623435. |
LI Z C, TIAN K, ZHAO H X. Efficient variable-fidelity models for hierarchical stiffened shells[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):623435 (in Chinese). | |
24 | ZHANG J Y, LIU C, LI X J, et al. A survey for solving mixed integer programming via machine learning?[J]. Neurocomputing, 2023, 519: 205-217. |
25 | DONG H C, WANG P, SONG B W, et al. Kriging-assisted Discrete Global Optimization (KDGO) for black-box problems with costly objective and constraints[J]. Applied Soft Computing, 2020, 94: 106429. |
26 | MüLLER J, SHOEMAKER C A, PICHé R. SO-?Ⅰ: A surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applications[J]. Journal of Global Optimization, 2014, 59(4): 865-889. |
27 | MüLLER J, SHOEMAKER C A, PICHé R. SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems?[J]. Computers & Operations Research, 2013, 40(5): 1383-1400. |
28 | TRAN A, TRAN M, WANG Y. Constrained mixed-integer Gaussian mixture Bayesian optimization and its applications in designing fractal and auxetic metamaterials[J]. Structural and Multidisciplinary Optimization, 2019, 59(6): 2131-2154. |
29 | ZHENG L, YANG Y P, FU G Q, et al. A surrogate-based optimization method with dynamic adaptation for high-dimensional mixed-integer problems?[J]. Swarm and Evolutionary Computation, 2022, 72: 101099. |
30 | 胡嘉欣, 芮姝, 高瑞朝, 等. 飞行器结构布局与尺寸混合优化方法[J]. 航空学报, 2022, 43(5): 225363. |
HU J X, RUI S, GAO R C, et al. Hybrid optimization method for structural layout and size of flight vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 225363 (in Chinese). | |
31 | 李昊达, 龙腾, 史人赫, 等. 基于样本映射与动态Kriging的飞行器离散连续优化方法[J]. 航空学报, 2024, 45(3): 228726. |
LI H D, LONG T, SHI R H, et al. Kriging-based mixed-integer optimization method using sample mapping mechanism for flight vehicle design[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 228726 (in Chinese). | |
32 | PARR J M, KEANE A J, FORRESTER A I J, et al. Infill sampling criteria for surrogate-based optimization with constraint handling[J]. Engineering Optimization, 2012, 44(10): 1147-1166. |
33 | ZHANG Y, HAN Z H, ZHANG K S. Variable-fidelity expected improvement method for efficient global optimization of expensive functions[J]. Structural and Multidisciplinary Optimization, 2018, 58(4): 1431-1451. |
34 | WANG Z L, IERAPETRITOU M. Constrained optimization of black-box stochastic systems using a novel feasibility enhanced Kriging-based method[J]. Computers & Chemical Engineering, 2018, 118: 210-223. |
35 | 王志祥. 重型运载火箭加筋圆柱壳舱段结构优化与试验[D]. 长沙: 国防科技大学, 2021. |
WANG Z X. Optimization design and experiment of stiffened cylindrical shells in heavy-lift launch vehicle?[D].Changsha: National University of Defense Technology, 2021 (in Chinese). | |
36 | WANG Z X, LEI Y J, WU Z P, et al. Lightweight design of cylindrical stiffened shells in launch vehicles by a dual-elite population sequential approximation optimization approach[J]. Engineering Optimization, 2021, 53(6): 984-1004. |
37 | 武泽平, 王志祥, 张为华. 数据驱动的近似建模方法及应用[M]. 北京: 国防工业出版社, 2023. |
WU Z P, WANG Z X, ZHANG W H. Data-driven metamodeling methods and applications?[M]. Beijing: National Defense Industry Press, 2023 (in Chinese). | |
38 | WU Z P, WANG D H, OKOLO P N, et al. Efficient space-filling and near-orthogonality sequential Latin hypercube for computer experiments?[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 324: 348-365. |
39 | 武泽平. 基于数值模拟的序列近似优化方法研究[D]. 长沙: 国防科技大学, 2018. |
WU Z P. Study on numerical simulation based sequential approximate optimization?[D]. Changsha: National University of Defense Technology, 2018 (in Chinese). | |
40 | JOSEPH V R, GUL E, BA S. Designing computer experiments with multiple types of factors: The MaxPro approach[J]. Journal of Quality Technology, 2020, 52(4): 343-354. |
41 | MORRIS M D, MITCHELL T J. Exploratory designs for computational experiments[J]. Journal of Statistical Planning and Inference, 1995, 43(3): 381-402. |
42 | JIN R C, CHEN W, SUDJIANTO A. An efficient algorithm for constructing optimal design of computer experiments[J]. Journal of Statistical Planning and Inference, 2005, 134(1): 268-287. |
43 | QIAN J C, YI J X, CHENG Y S, et al. Asequential constraints updating approach for Kriging surrogate model-assisted engineering optimization design problem[J]. Engineering with Computers, 2020, 36(3): 993-1009. |
/
〈 |
|
〉 |