在航母联合作战体系中,舰载机着舰是一项重要而艰巨的任务。本文提出一种基于直接升力的自适应反步着舰控制系统(Direct Lift Controller Based on Backstepping Method, BSDLC),该系统可以让飞行员在下滑阶段直接操控航迹角,降低了着舰操作难度并提高了着舰精度。控制系统采用航迹角作为引导指令,设计襟翼通道、平尾通道和油门通道实现着舰操作的解耦,降低飞行员的操作负荷;引入自适应律对模型中的不确定参数进行迭代逼近,降低了控制律对于模型参数的依赖;提出基于平衡俯仰角速度的直接升力动态解耦模块实现襟翼和平尾的联动控制,提高了航迹角和姿态角的解耦效果;在控制器设计上还采用自适应超扭扩张状态观测器(Adaptive Super-Twisting Extended State Observer, ASTESO)估计扰动并补偿,提高了系统的抗扰动能力。通过在舰载机进场着舰模型中进行的一系列的测试表明,所提出的着舰控制系统具备快速调整航迹角和抑制舰尾流扰动的能力,在仿真着舰中实现了精准着舰的目标,并且具备较强的鲁棒性能。
In a carrier strike group’s integrated combat system, carrier?based aircraft landings constitute both a critical and de-manding operation. This paper presents a Backstepping?based Direct Lift Controller (BSDLC) that enables the pilot to command the flight?path angle directly during the glideslope phase, thereby reducing the operational complexity of carrier landings and improving touchdown accuracy. The proposed control architecture uses the flight?path angle as the primary guidance command and implements three independent channels—for flaps, horizontal tail, and throt-tle—to decouple landing maneuvers and thus reduce pilot workload. An adaptive law is incorporated to iteratively estimate uncertain model parameters, diminishing the controller’s dependence on precise parameter values. Fur-thermore, a direct?lift dynamic decoupling module based on balanced pitch?rate feedback is introduced to coordi-nate flap and horizontal?tail deflections, enhancing the decoupling between flight?path and attitude angles. To fur-ther bolster disturbance rejection, an Adaptive Super?Twisting Extended State Observer (ASTESO) is employed to estimate and compensate for external disturbances. A series of simulation tests on a carrier?based aircraft approach?landing model demonstrate that the BSDLC can rapidly adjust the flight?path angle, suppress wake?vortex dis-turbances, and achieve high?precision landings while exhibiting strong robustness.
[1] 甄子洋,王新华,江驹,等.舰载机自动着舰引导与控制研究进展[J].航空学报,2017,38(02):127-148.
[2] 张志冰,甄子洋,江驹,等.舰载机自动着舰引导与控制综述[J].南京航空航天大学学报,2018,50(06):734-744.
[3] Zhen Z, Jiang S, Jiang J. Preview control and particle filtering for automatic carrier land-ing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2662-2674.
[4] Yuan Y, Duan H, Zeng Z. Automatic carrier landing control with external disturbance and input con-straint[J]. IEEE Transactions on Aer-ospace and Elec-tronic Systems, 2022, 59(2): 1426-1438.
[5] Lungu M. Backstepping and dynamic inversion combined controller for auto-landing of fixed wing UAVs[J]. Aerospace Science and Technol-ogy, 2020, 96: 105526.
[6] Duan H, Yuan Y, Zeng Z. Automatic carrier landing system with fixed time control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3586-3600.
[7] Duan H, Chen L, Zeng Z. Automatic landing for carrier-based aircraft under the conditions of deck motion and carrier airwake disturb-ances[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5276-5291.
[8] JM Urnes R K H, Moomaw R F, Huff R W. H-dot automatic carrier landing system for ap-proach control in turbulence[J]. Journal of Guidance and Control, 1981, 4(2): 177-183.
[9] Deng Y, Duan H. Control parameter design for automatic carrier landing system via pigeon-inspired optimization[J]. Nonlinear Dynamics, 2016, 85: 97-106.
[10] Dou R, Duan H. Lévy flight based pigeon-inspired optimization for control parameters optimization in automatic carrier landing sys-tem[J]. Aerospace Science and Technology, 2017, 61: 11-20.
[11] 张志冰,张秀林,王家兴,等.一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J].航空学报,2021,42(08):142-157.
[12] Denham J W. Project MAGIC CARPET: “ad-vanced controls and displays for precision car-rier landings”[C]//54th AIAA Aerospace Sci-ences Meeting. 2016: 1770.
[13] Yan Y, Yang J, Liu C, et al. On the actuator dynamics of dynamic control allocation for a small fixed-wing UAV with direct lift con-trol[J]. IEEE Transactions on Control Systems Technology, 2020, 28(3): 984-991.
[14] Zou A M, Kumar K D, Hou Z G. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural net-works[J]. IEEE transactions on neural networks, 2010, 21(9): 1457-1471.
[15] Guan Z, Liu H, Zheng Z, et al. Moving path following with integrated direct lift control for carrier landing[J]. Aerospace Science and Tech-nology, 2022, 120: 107247.
[16] 罗飞,张军红,王博,等. 基于直接升力与动态逆的舰尾流抑制方法 [J]. 航空学报, 2021, 42 (12): 193-208.
[17] 杨智博. 舰载机自动着舰系统纵向控制策略研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[18] Yu Y, Wang H, Li N, et al. Automatic carrier landing system based on active disturbance re-jection control with a novel parameters opti-mizer[J]. Aerospace science and technology, 2017, 69: 149-160.
[19] Lungu M, Dinu D A, Chen M, et al. Inverse optimal control for autonomous carrier landing with disturbances[J]. Aerospace Science and Technology, 2023, 139: 108382.
[20] 朱玉莲.舰载机“魔毯”着舰技术研究[D].南京航空航天大学,2020.
[21] 吴文海,汪节,高丽,等.MAGIC CARPET着舰技术分析[J].系统工程与电子技术,2018,40(09):2079-2091.
[22] 张守权.基于直接力控制的人工着舰技术综述[J].飞机设计,2022,42(02):21-25.