[1]ZHOU M, XING R, HAN D, et al. PDT: Uav Target Detection Dataset for Pests and Diseases Tree[C]//2024 European Conference on Computer Vision (ECCV). Milan: Springer, 2024: 56-72.
[2]KAUFMANN E, BAUERSFELD L, LOQUERCIO A, et al. Champion-level drone racing using deep reinforcement learning[J]. Nature, 2023, 620: 982-987.
[3]吴一全, 童康. 基于深度学习的无人机航拍图像小目标检测研究进展[J]. 航空学报, 2025, 46(3): 30848.
WU Y Q, TONG K. Research advances on deep learning-based small object detection in UAV aerial images[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 30848 (in Chinese).
[4]LIN J L, LUO Z M, LIN D Z, et al. A Self-Adaptive Feature Extraction Method for Aerial-View Geo-Localization[J]. IEEE Transactions on Image Processing, 2024, 34: 126-139.
[5]王海峰. 高性能协同作战无人机的发展与思考[J]. 航空学报, 2024, 45(17): 8-25+3.
WANG H F. Development of high performance collaborative combat UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 8-25+3 (in Chinese).
[6]CAO X Y, ZHENG Y Y, YAO Y, et al. TOPIC: A Parallel Association Paradigm for Multi-Object Tracking Under Complex Motions and Diverse Scenes[J]. IEEE Transactions on Image Processing, 2025, 34: 743-758.
[7]DING J G, LI W, YANG M, et al. SeaTrack: Rethinking Observation-Centric SORT for Robust Nearshore Multiple Object Tracking[J]. Pattern Recognition, 2025, 159: 111091.
[8]NGUYEN T T, NGUYEN P, LI X, et al. CYCLO: Cyclic Graph Transformer Approach to Multi-Object Relationship Modeling in Aerial Videos[C]//2024 Advances in Neural Information Processing Systems (NeurIPS). Vancouver: MIT Press, 2024, 37: 90355-90383.
[9]FENG M Z, SU J B. RGBT tracking: A comprehensive review[J]. Information Fusion, 2024, 110: 102492.
[10]WANG J H, LIU F, JIAO L C, et al. Visual and Language Collaborative Learning for RGBT Object Tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(12): 12770-12781.
[11]WU Z W, ZHENG J L, REN X X, et al. Single-Model and Any-Modality for Video Object Tracking[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2024: 19156-19166.
[12]王传云, 苏阳, 王琳霖, 等. 面向反制无人机集群的多目标连续鲁棒跟踪算法[J]. 航空学报, 2024, 45(7): 256-269.
WANG C Y, SU Y, WANG L L, et al. Multi-object continuous robust tracking algorithm for anti-UAV swarm[J]. Acta Aeronautica et Astronautica Sinica, 2024,45(7): 256-269 (in Chinese).
[13]LUO W, XING J, MILAN A, et al. Multiple object tracking: A literature review[J]. Artificial intelligence, 2021, 293: 103448.
[14]PAL S K. PRAMANIK A, MAITI J, et al. Deep learning in multi-object detection and tracking: state of the art[J]. Applied Intelligence, 2021, 51: 6400-6429.
[15]HUANG C, HAN S, HE M, et al. DeconfuseTrack: Dealing with Confusion for Multi-Object Tracking[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2024: 19290-19299.
[16]LUO R, SONG Z, MA L, et al. Diffusiontrack: Diffusion model for multi-object tracking[C]//2024 AAAI Conference on Artificial Intelligence (AAAI). Vancouver: AAAI, 2024, 38(5): 3991-3999.
[17]ZHANG Y, LIANG Y, LENG J, et al. SCGTracker: Spatio-temporal correlation and graph neural networks for multiple object tracking[J]. Pattern Recognition, 2024, 149: 110249.
[18]WANG B, SUI H, MA G, et al. MCTracker: Satellite video multi-object tracking considering inter-frame motion correlation and multi-scale cascaded feature enhancement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 214: 82-103.
[19]薛远亮, 金国栋, 谭力宁, 等. 基于多尺度融合的自适应无人机目标跟踪算法[J]. 航空学报, 2023, 44(1): 209-226.
XUE Y L, JIN G D, TAN L N, et al. Adaptive UAV target tracking algorithm based on multi-scale fusion[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 209-226 (in Chinese).
[20]TELIKANI A, SARKAR A, DU B, et al. Machine Learning for UAV-Aided ITS: A Review With Comparative Study[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 15388-15406.
[21]YIN N, LIU C, TIAN R, et al. Sdpdet: Learning scale-separated dynamic proposals for end-to-end drone-view detection[J]. IEEE Transactions on Multimedia, 2024, 26: 7812-7822.
[22]HUANG B, LI J N, CHEN J J, et al. Anti-UAV410: A Thermal Infrared Benchmark and Customized Scheme for Tracking Drones in the Wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5): 2852-2865.
[23]YE N Y, ZENG Z Y, ZHOU J D, et al. OoD-Control: Generalizing Control in Unseen Environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(11): 7421-7433.
[24]DAI M, ZHENG E H, FENG Z H, et al. Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments[J]. IEEE Transactions on Image Processing, 2023, 33: 493-508.
[25]AKBARI Y, ALMAADED N, AL-MAADEE S, et al. Applications, databases and open computer vision research from drone videos and images: a survey[J]. Artificial Intelligence Review, 2021, 54: 3887-3938.
[26]WU X, LI W, HONG D, et al. Deep learning for unmanned aerial vehicle-based object detection and tracking: A survey[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 10(1): 91-124.
[27]苑玉彬, 吴一全, 赵朗月, 等. 基于深度学习的无人机航拍视频多目标检测与跟踪研究进展[J]. 航空学报, 2023, 44(18): 6-36.
YUAN Y B, WU Y Q, ZHAO L Y, et al. Research progress of UAV aerial video multi-object detection and tracking based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 6-36 (in Chinese).
[28]FU C, LU K, ZHENG G, et al. Siamese object tracking for unmanned aerial vehicle: A review and comprehensive analysis[J]. Artificial Intelligence Review, 2023, 56: 1417-1477.
[29]SUN N, ZHAO J, SHI Q, et al. Moving Target Tracking by Unmanned Aerial Vehicle: A Survey and Taxonomy[J]. IEEE Transactions on Industrial Informatics, 2024, 20(5): 7056-7068.
[30]WANG J K, WU Z X, CHEN D D, et al. OmniTracker: Unifying Visual Object Tracking by Tracking-with-Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025: 1-15.
[31]FUNG A, BENHABIB B, NEJAT G. LDTrack: Dynamic People Tracking by Service Robots Using Diffusion Models[J]. International Journal of Computer Vision, 2025: 1-21.
[32]GAO Y, XU H J, LI J, et al. BPMTrack: Multi-Object Tracking With Detection Box Application Pattern Mining[J]. IEEE Transactions on Image Processing, 2024, 33: 1508-1521.
[33]ZHAO X, HU S Y, WANG W P, et al. BioDrone: A Bionic Drone-Based Single Object Tracking Benchmark for Robust Vision[J]. International Journal of Computer Vision, 2023, 132: 1659-1684.
[34]WANDELT S, WANG S, ZHENG C H, et al. AERIAL: A Meta Review and Discussion of Challenges Toward Unmanned Aerial Vehicle Operations in Logistics, Mobility, and Monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 6276-6289.
[35]TRAN T M, BUI D C, NGUYEN T V, et al. Transformer-Based Spatio-Temporal Unsupervised Traffic Anomaly Detection in Aerial Videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(9): 8292-8309.
[36]WANG J, LI X Q, ZHOU L H, et al. Adaptive Receptive Field Enhancement Network Based on Attention Mechanism for Detecting the Small Target in the Aerial Image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 1-18.
[37]KOUZEGHAR M, SONG Y, MEGHJANI M, et al. Multi-Target Pursuit by a Decentralized Heterogeneous UAV Swarm using Deep Multi-Agent Reinforcement Learning[C]//2023 IEEE International Conference on Robotics and Automation (ICRA). London: IEEE, 2023: 3289-3295.
[38]KHAN M U, DIL M, ALAM M Z, et al. SafeSpace MFNet: Precise and Efficient MultiFeature Drone Detection Network[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 3106-3118.
[39]YANG M Z, HAN G X, YAN B, ZHANG W H, et al. Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking[C]//2024 AAAI Conference on Artificial Intelligence (AAAI). Vancouver: AAAI, 2024, 38(7): 6504-6512.
[40]CAO J, PANG J, WENG X, et al. Observation-centric sort: Rethinking sort for robust multi-object tracking[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 9686-9696.
[41]LI J, YE D H, CHUNG T, et al. Multi-target detection and tracking from a single camera in Unmanned Aerial Vehicles (UAVs)[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon: IEEE, 2016: 4992-4997.
[42]PAN S, TONG Z, ZHAO Y, et al. Multi-object tracking hierarchically in visual data taken from drones[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. Seoul: IEEE, 2019: 0-0.
[43]DUAN K W, BAI S, XIE L X, et al. CenterNet: Keypoint Triplets for Object Detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 6569-6578.
[44]BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]//2016 IEEE International Conference on Image Processing (ICIP). Phoenix: IEEE, 2016: 3464-3468.
[45]SHI L K, ZHANG Q R, PAN B, et al. Global-Local and Occlusion Awareness Network for Object Tracking in UAVs[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 8834-8844.
[46]BARBARY M, ABD E M H. Drones tracking based on robust cubature Kalman-TBD-multi-Bernoulli filter[J]. ISA transactions, 2021, 114: 277-290.
[47]LIU S, LI X, LU H, et al. Multi-object tracking meets moving UAV[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 8876-8885.
[48]CHENG S, YAO M, XIAO X. Dc-mot: Motion deblurring and compensation for multi-object tracking in uav videos[C]//2023 IEEE International Conference on Robotics and Automation (ICRA). London: IEEE, 2023: 789-795.
[49]QIU B Y, GUO Y F, XUE A, et al. Improved Gaussian processes linear JPDA filter for multiple extended targets tracking in dense clutter[J]. Digital Signal Processing, 2024, 153: 104600.
[50]XU S, SAVVARIS A, HE S, et al. Real-time implementation of YOLO+ JPDA for small scale UAV multiple object tracking[C]//2018 International Conference on Unmanned Aircraft Systems (ICUAS). Dallas: IEEE, 2018: 1336-1341.
[51]REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE conference on computer vision and pattern recognition (CVPR). Hawaii: IEEE, 2017: 7263-7271.
[52]MEMON S A, ULLAH I. Detection and tracking of the trajectories of dynamic UAVs in restricted and cluttered environment[J]. Expert Systems with Applications, 2021, 183: 115309.
[53]WANG D, LIAN B, LIU Y, et al. A cooperative UAV swarm localization algorithm based on probabilistic data association for visual measurement[J]. IEEE Sensors Journal, 2022, 22(20): 19635-19644.
[54]CHAI J, HE S, SHIN H S, et al. Domain-knowledge-aided airborne ground moving targets tracking[J]. Aerospace Science and Technology, 2024, 144: 108807.
[55]MILAN A, REZATOFIGHI S H, DICK A, et al. Online multi-target tracking using recurrent neural networks[C]//2017 AAAI conference on Artificial Intelligence (AAAI). San Francisco: AAAI, 2017, 31(1).
[56]SADEGHIAN A, ALAHI A, SAVARESE S. Tracking the untrackable: Learning to track multiple cues with long-term dependencies[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 300-311.
[57]XIAO F, LEE Y J. Video object detection with an aligned spatial-temporal memory[C]//2018 European Conference on Computer Vision (ECCV). Milan: Springer, 2018: 485-501.
[58]YAO M, WANG J, PENG J, et al. Folt: Fast multiple object tracking from uav-captured videos based on optical flow[C]//2023 ACM International Conference on Multimedia (ACMMM). Ottawa: ACM, 2023: 3375-3383.
[59]YU H, LI G, SU L, et al. Conditional GAN based individual and global motion fusion for multiple object tracking in UAV videos[J]. Pattern Recognition Letters, 2020, 131: 219-226.
[60]WANG P, WANG Y, LI D. Dronemot: Drone-based multi-object tracking considering detection difficulties and simultaneous moving of drones and objects[C]//2024 IEEE International Conference on Robotics and Automation (ICRA). Paris: IEEE, 2024: 7397-7404.
[61]LIU Z, LIN Y, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2021: 10012-10022.
[62]YAO T, LI Y, PAN Y, et al. Hiri-vit: Scaling vision transformer with high resolution inputs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(9): 6431-6442.
[63]HU M, ZHU X, WANG H, et al. Stdformer: Spatial-temporal motion transformer for multiple object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(11): 6571-6594.
[64]SONG I, LEE J. SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects[C]//2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Abu Dhabi: IEEE, 2024: 10870-10877.
[65]KAPANIA S, SAINI D, GOYAL S, et al. Multi object tracking with UAVs using deep SORT and YOLOv3 RetinaNet detection framework[C]//2020 ACM Workshop on Autonomous and Intelligent Mobile Systems (AIMS2020). Bangalore: ACM, 2020: 1-6.
[66]WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//2017 IEEE International Conference on Image Processing (ICIP). Beijing: IEEE, 2017: 3645-3649.
[67]ZHANG Y, SUN P, JIANG Y, et al. Bytetrack: Multi-object tracking by associating every detection box[C]//2022 European Conference on Computer Vision. Tel Aviv: Springer, 2022: 1-21.
[68]ZHANG W, LI J, XIA M, et al. OffsetNet: Towards Efficient Multiple Object Tracking, Detection, and Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 47(2): 949-960.
[69]MA J, LIU D, QIN S, et al. An Asymmetric Feature Enhancement Network for Multiple Object Tracking of Unmanned Aerial Vehicle[J]. Remote Sensing, 2023, 16(1): 70.
[70]BERGMANN P, MEINHARDT T, LEAL-TAIXE L. Tracking without bells and whistles[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 941-951.
[71]WU H, HE Z, GAO M. GCEVT: Learning global context embedding for vehicle tracking in unmanned aerial vehicle videos[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 20: 1-5.
[72]XU L, HUANG Y. Rethinking joint detection and embedding for multiobject tracking in multiscenario[J]. IEEE Transactions on Industrial Informatics, 2024, 20(6): 8079-8088.
[73]WU H, NIE J, HE Z, et al. One-shot multiple object tracking in UAV videos using task-specific fine-grained features[J]. Remote Sensing, 2022, 14(16): 3853.
[74]LI W, MU J, LIU G. Multiple object tracking with motion and appearance cues[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. Seoul: IEEE, 2019: 0-0.
[75]ZHANG Y, WANG C, WANG X, et al. Fairmot: On the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129: 3069-3087.
[76]SHEN Z, CAI K, ZHAO P, et al. An interactively motion-assisted network for multiple object tracking in complex traffic scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 25(2): 1992-2004.
[77]KIM C, LI F, REHG J M. Multi-object tracking with neural gating using bilinear lstm[C]//2018 European Conference on Computer Vision (ECCV). Salt Lake City: Springer, 2018: 200-215.
[78]YU Q, MA Y, HE J, et al. A unified transformer based tracker for anti-uav tracking[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 3036-3046.
[79]NIE J, WU H, HE Z, et al. Spreading fine-grained prior knowledge for accurate tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(9): 6186-6199.
[80]LV W, ZHANG N, ZHANG J, et al. One-shot multiple object tracking with robust id preservation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 34(6): 4473-4488.
[81]PAN S, TONG Z, ZHAO Y, et al. Multi-object tracking hierarchically in visual data taken from drones[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. Seoul: IEEE, 2019: 0-0.
[82]CHU Q, OUYANG W, LI H, et al. Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 4836-4845.
[83]Feng W, Li B, OUYANG W. Multi-object tracking with multiple cues and switcher-aware classification[C]//2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA). Sydney: IEEE, 2022: 1-10.
[84]LI B, WU W, WANG Q, et al. Siamrpn++: Evolution of siamese visual tracking with very deep networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 4282-4291.
[85]ZHU J, YANG H, LIU N, et al. Online multi-object tracking with dual matching attention networks[C]//2018 European Conference on Computer Vision (ECCV). Milan: Springer, 2018: 366-382.
[86]DANELLJAN M, BHAT G, SHAHBAZ K F, et al. Eco: Efficient convolution operators for tracking[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii: IEEE, 2017: 6638-6646.
[87]DANG Z, SUN X, SUN B, et al. OMCTrack: Integrating Occlusion Perception and Motion Compensation for UAV Multi-Object Tracking[J]. Drones, 2024, 8(9): 480.
[88]GHOSH S, PATRIKAR J, MOON B, et al. AirTrack: Onboard deep learning framework for long-range aircraft detection and tracking[C]//2023 IEEE International Conference on Robotics and Automation (ICRA). London: IEEE, 2023: 1277-1283.
[89]SHUAI B, BERNESHAWI A, Li X, et al. Siammot: Siamese multi-object tracking[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 12372-12382.
[90]YANG L, WANG H, SUN H, et al. MOFTrack: Multi-object Formation Tracking in Remote Sensing Videos[C]//2024 Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Urumqi: Springer, 2024: 551-565.
[91]REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[92]WANG Y, KITANI K, WENG X. Joint object detection and multi-object tracking with graph neural networks[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Xian: IEEE, 2021: 13708-13715.
[93]HE X, JIN J, CHEN D, et al. RoMATer: An end-to-end robust multiaircraft tracker with transformer[C]//2024 International Joint Conference on Neural Networks (IJCNN). Yokohoma: IEEE, 2024: 1-8.
[94]ZENG F, DONG B, ZHANG Y, et al. Motr: End-to-end multiple-object tracking with transformer[C]//2022 European Conference on Computer Vision (ECCV). Tel Aviv: Springer, 2022: 659-675.
[95]XU Y, BAN Y, DELORME G, et al. TransCenter: Transformers with dense representations for multiple-object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(6): 7820-7835.
[96]MEINHARDT T, KIRILLOV A, LEAL-TAIXE L, et al. Trackformer: Multi-object tracking with transformers[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 8844-8854.
[97]LEI D, XU M, WANG S. A deep multimodal network for multi-task trajectory prediction[J]. Information Fusion, 2025, 113: 102597.
[98]ZHU P F, ZHENG J Y, DU D W, et al. Multi-Drone-Based Single Object Tracking With Agent Sharing Network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(10): 4058-4070.
[99]WANG Z C, CHENG P R, CHEN M X, et al. Drones Help Drones: A Collaborative Framework for Multi-Drone Object Trajectory Prediction and Beyond[C]//2024 Advances in Neural Information Processing Systems (NeurIPS). Vancouver: MIT Press, 2024, 37: 64604-64628.
[100]YE H, SUNDERRAMAN R, JI S H. UAV3D: A Large-scale 3D Perception Benchmark for Unmanned Aerial Vehicles[C]//2024 Advances in Neural Information Processing Systems (NeurIPS). Vancouver: MIT Press, 2024, 37: 55425-55442.
[101]CHEN G L, ZHU P F, CAO B, et al. Cross-Drone Transformer Network for Robust Single Object Tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(9): 4552-4563.
[102]XUE Y L, JIN G D, SHEN T, et al. Consistent Representation Mining for Multi-Drone Single Object Tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(11): 10845-10859.
[103]FU Z H, FU Z H, LIU Q J, et al. SparseTT: Visual Tracking with Sparse Transformers[C]//2022 International Joint Conference on Artificial Intelligence (IJCAI). Vienna: Morgan Kaufmann, 2022: 905-912.
[104]伍瀚, 孙浩, 计科峰, 等. 时序信息引导跨视角特征融合的多无人机多目标跟踪方法[J/OL]. 电子学报, 2025. DOI: 10.12263/DZXB.20240727.
WU H, SUN H, JI K F, et al. Temporal-Guided Cross-View Feature Fusion Network for Multi-Drone Multi-Object Tracking[J/OL]. Acta Electronica Sinica, 2025 (in Chinese). DOI: 10.12263/DZXB.20240727.
[105]JAVED S, HASSAN A, AHMAD R, et al. State-of-the-art and future research challenges in uav swarms[J]. IEEE Internet of Things Journal, 2024, 11(11): 19023-19045.
[106]SUN J M, SHEN Z H, WANG Y A, et al. LoFTR: Detector-Free Local Feature Matching With Transformers[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021: 8922-8931.
[107]LINDENBERGER P, SARLIN P E, POLLEFEYS M. Lightglue: Local feature matching at light speed[C]. 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris: IEEE, 2023: 17627-17638.
[108]AMOSA T I, SEBASTIAN P, IZHAR I L, et al. Multi-camera multi-object tracking: A review of current trends and future advances[J]. Neurocomputing, 2023, 552: 126558.
[109]QIAN Y J, YU L J, LIU W H, et al. ELECTRICITY: An Efficient Multi-Camera Vehicle Tracking System for Intelligent City[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. Seattle: IEEE, 2020: 588-589.
[110]HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]. 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
[111]CHEN G L, ZHU P F, CAO B, et al. Cross-Drone Transformer Network for Robust Single Object Tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(9): 4552-4563.
[112]WU H, SUN H, JI K F, et al. Temporal-spatial feature interaction network for multi-drone multi-object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35(2): 1165-1179.
[113]GUO Y D, LIU Z Y, LUO H, et al. Multi-person multi-camera tracking for live stream videos based on improved motion model and matching cascade[J]. Neurocomputing, 2022, 492: 561-571.
[114]LIU Z H, SHANG Y Y, LI T M, et al. Robust Multi-Drone Multi-Target Tracking to Resolve Target Occlusion: A Benchmark[J]. IEEE Transactions on Multimedia, 2023, 25: 1462-1476.
[115]BELLAVIA F. SIFT Matching by Context Exposed[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2): 2445-2457.
[116]QIN Z, ZHOU S P, WANG L, et al. MotionTrack: Learning Robust Short-Term and Long-Term Motions for Multi-Object Tracking[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 17939-17948.
[117]GUAN D Y, CAO Y P, YANG J X, et al. Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection[J]. Information Fusion, 2019, 50: 148-157.
[118]ZHOU K L, CHEN L S, CAO X. Improving Multispectral Pedestrian Detection by Addressing Modality Imbalance Problems[C]. 2020 European Conference on Computer Vision (ECCV). Glasgow: Springer, 2020: 787-803.
[119]TANG L F, YUAN J T, ZHANG H, et al. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83-84: 79-92.
[120]XU H, MA J Y, JIANG J J, et al. U2Fusion: A Unified Unsupervised Image Fusion Network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502-518.
[121]XU H, MA J Y, YUAN J T, et al. RFNet: Unsupervised Network for Mutually Reinforcing Multi-Modal Image Registration and Fusion[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 19679-19688.
[122]HOU R C, ZHOU D M, NIE R C, et al. VIF-Net: An Unsupervised Framework for Infrared and Visible Image Fusion[J]. IEEE Transactions on Computational Imaging, 2020, 6: 640-651.
[123]SUN Y M, CAO B, ZHU P F, et al. Drone-Based RGB-Infrared Cross-Modality Vehicle Detection Via Uncertainty-Aware Learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 6700-6713.
[124]DU X X, ZARE A. Multiresolution Multimodal Sensor Fusion for Remote Sensing Data With Label Uncertainty[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2755-2769.
[125]YE M, SHEN J B, LIN G J, et al. Deep Learning for Person Re-Identification: A Survey and Outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872-2893.
[126]LI H, LI C, ZHU X, et al. Multi-spectral vehicle re-identification: A challenge[C]//2020 AAAI Conference on Artificial Intelligence (AAAI). New York: AAAI, 2020, 34(7): 11345-11353.
[127]LIANG T F, JIN Y, LIU W, et al. Cross-Modality Transformer With Modality Mining for Visible-Infrared Person Re-Identification[J]. IEEE Transactions on Multimedia, 2023, 25: 8432-8444.
[128]ZHANG S Z, YANG Y F, WANG P, et al. Attend to the Difference: Cross-Modality Person Re-Identification via Contrastive Correlation[J]. IEEE Transactions on Image Processing, 2021, 30: 8861-8872.
[129]YE M, WANG Z, LAN X Y, et al. Visible Thermal Person Re-Identification via Dual-Constrained Top-Ranking[C]//2018 International Joint Conference on Artificial Intelligence (IJCAI). Stockholm: Morgan Kaufmann, 2018: 1092-1099.
[130]ZHANG Y Y, ZHAO S Y, KANG Y J, et al. Modality Synergy Complement Learning with Cascaded Aggregation for Visible-Infrared Person Re-Identification[C]//2022 European Conference on Computer Vision (ECCV). Tel Aviv: Springer, 2022: 462-479.
[131]YU H, CHENG X, PENG W, et al. Modality Unifying Network for Visible-Infrared Person Re-Identification[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris: IEEE, 2023: 11185-11195.
[132]ZHU P, WEN L, DU D, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(11): 7380-7399.
[133]DU D, QI Y, YU H, et al. The unmanned aerial vehicle benchmark: Object detection and tracking[C]//2018 European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 370-386.
[134]MANDAL M, KUMAR L K, VIPPARTHI S K. Mor-uav: A benchmark dataset and baselines for moving object recognition in uav videos[C]//2020 ACM International Conference on Multimedia (ACMMM). ACM, 2020: 2626-2635.
[135]ZHU P, PENG T, DU D, et al. Graph regularized flow attention network for video animal counting from drones[J]. IEEE Transactions on Image Processing, 2021, 30: 5339-5351.
[136]VARGA L A, KIEFER B, MESSMER M, et al. Seadronessee: A maritime benchmark for detecting humans in open water[C]//2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa: IEEE, 2022: 2260-2270.
[137]DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: An open urban driving simulator[C]// 2017 Proceedings of Machine Learning Research (PMLR), Fort Lauderdate: MLR Press, 2017: 1-16.
[138]XU Q, WANG L, SHENG W, et al. Heterogeneous graph transformer for multiple tiny object tracking in RGB-T videos[J]. IEEE Transactions on Multimedia, 2024, 26: 9383-9397.
[139]YING X, XIAO C, LI R, et al. Visible-thermal tiny object detection: A benchmark dataset and baselines[DB/OL]. arXiv preprint: 2406.14482, 2024.
[140]ZHUY, WANG Q, LI C, et al. Visible-thermal multiple object tracking: Large-scale video dataset and progressive fusion approach[J]. Pattern Recognition, 2025, 161: 111330.
[141]DENDORFER P, OSEP A, MILAN A, et al. Motchallenge: A benchmark for single-camera multiple target tracking[J]. International Journal of Computer Vision, 2021, 129: 845-881.
[142]LUITEN J, OSEP A, DENDORFER P, et al. Hota: A higher order metric for evaluating multi-object tracking[J]. International Journal of Computer Vision, 2021, 129: 548-578.
[143]FENG C, ZHONG Y, GAO Y, et al. Tood: Task-aligned one-stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2021: 3490-3499.
[144]ZHU B, WANG J, JIANG Z, et al. Autoassign: Differentiable label assignment for dense object detection[DB/OL]. arXiv preprint: 2007.03496, 2020.
[145]WANG J, CHEN K, XU R, et al. Carafe: Content-aware reassembly of features[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 3007-3016.
[146]PANG J, QIU L, LI X, et al. Quasi-dense similarity learning for multiple object tracking[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 164-173.
[147]VU T, JANG H, PHAM T X, et al. Cascade RPN: Delving into high-quality region proposal network with adaptive convolution[C]//2019 Advances in Neural Information Processing Systems (NeurIPS), Vancouver: MIT Press, 2019, 32.
[148]HE L, LIAO X, LIU W, et al. Fastreid: A pytorch toolbox for general instance re-identification[C]//2023 ACM International Conference on Multimedia (ACMMM). Ottawa: ACM, 2023: 9664-9667.
[149]ZHOU X, KOLTUN V, KRAHENBUHL P. Tracking objects as points[C]//2020 European Conference on Computer Vision. Springer, 2020: 474-490.
[150]WU J, CAO J, SONG L, et al. Track to detect and segment: An online multi-object tracker[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 12352-12361.
[151]CHEN Y T, SHI J, YE Z, et al. Multimodal object detection via probabilistic ensembling[C]//2022 European Conference on Computer Vision (ECCV). Tel Aviv: Springer, 2022: 139-158.
[152]SUN Y, CAO B, ZHU P, et al. Drone-based RGB-infrared cross-modality vehicle detection via uncertainty-aware learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 6700-6713.