面向舰载机多波次弹药保障任务的分层动态调度

  • 罗祎喆 ,
  • 张辉 ,
  • 余新得 ,
  • 金钊 ,
  • 冯朔 ,
  • 石育澄 ,
  • 徐明亮
展开
  • 1. 郑州大学 计算机与人工智能学院
    2. 郑州大学
    3. 郑州大学计算机与人工智能学院

收稿日期: 2025-03-06

  修回日期: 2025-05-30

  网络出版日期: 2025-06-06

基金资助

国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金

Hierarchical Dynamic Scheduling for MultiWave Aircraft Carrier-Based Aircraft Ammunition Support Missions

  • LUO Yi-Zhe ,
  • ZHANG Hui ,
  • YU Xin-De ,
  • JIN Zhao ,
  • FENG Shuo ,
  • SHI Yu-Cheng ,
  • XU Ming-Liang
Expand

Received date: 2025-03-06

  Revised date: 2025-05-30

  Online published: 2025-06-06

摘要

航空母舰舰载机弹药保障作业调度过程中,各类型转运设备与保障流程高度耦合,导致调度问题的状态空间呈现较强的非凸特性,且多波次待保障弹药数量较大,进一步增大了搜索空间,致使弹药保障过程效率较低,且难以满足任务的动态实时性要求。对此,本文借鉴分而治之的思想,提出了一种基于分层强化学习的舰载机弹药保障作业动态调度方法。首先,将弹药保障作业的调度决策过程解耦,分别在顶层与底层分别执行,削弱调度问题非凸型及规模的影响;然后,在底层进行弹药转运设备的决策网络训练,并待其收敛后内嵌于顶层环境中,提供实时的底层反馈;同时,在顶层进行弹药保障顺序的决策网络训练,并设计资源预定机制,通过递推计算弹药转运时间确认各转运设备的可用时段,从而有效避免了对设备占用的冲突;最后,在典型任务场景下进行算法验证,结果表明,与优化算法相比,所提算法可在牺牲微小转运时间的前提下大幅提升决策实时性,兼顾了弹药保障时间和保障方案产出时间,可适用于强实时、高动态的保障任务。

本文引用格式

罗祎喆 , 张辉 , 余新得 , 金钊 , 冯朔 , 石育澄 , 徐明亮 . 面向舰载机多波次弹药保障任务的分层动态调度[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31945

Abstract

During the scheduling process of carrier-based aircraft ammunition support operations on aircraft carriers, the intricate interdependencies between various types of transfer equipment and support processes engender a highly non convex state space for the scheduling problem. Moreover, the substantial number of ammunition batches necessitating support further exacerbates the complexity by significantly expanding the search space, thereby diminishing the efficiency of the ammunition support process and impeding the ability to meet the dynamic real-time requirements of tasks.To address these challenges, this paper proposes a dynamic scheduling method for carrier-based aircraft ammunition support operations, which is founded on hierarchical reinforcement learning and inspired by the divide-and-conquer strategy. Initially, the scheduling decision process of ammunition support operations is decoupled and executed separately at the top and bottom levels, thereby alleviating the impact of the non-convexity and scale of the scheduling problem. Subsequently, decision network training for ammunition transfer equipment is conducted at the bottom level, and upon convergence, the trained model is integrated into the top-level environment to provide real-time feedback from the bottom level. Concurrently, at the top level, decision network training for ammunition support sequencing is performed, and a resource reservation mechanism is devised to recursively calculate ammunition transfer times, thereby determining the available time windows for transfer equipment and effectively circumventing conflicts in equipment usage. Ultimately, the proposed algorithm is validated in typical mission scenarios. The results indicate that, compared to traditional optimization algorithms, the proposed method substantially enhances decision-making real-time performance with only a minimal trade-off in scheduling time. It achieves a balanced trade-off between ammunition support time and the time required to generate support plans, rendering it well-suited for highly dynamic and strongly real-time support tasks.

参考文献

[1]李亚飞, 吴庆顺, 徐明亮, 等.基于强化学习的舰载机保障作业实时调度方法[J].中国科学信息科学, 2021, 51(02):247-261
[2]Guo F, Han W, Su X, et al.A Bi-population Immune Algorithm for Weapon Transportation Support Scheduling Problem with Pickup and Delivery on Aircraft Carrier Deck[J].Defence Technology, 2023, 22(04):119-134
[3]张少辉, 刘舜, 李亚飞, 等.航空母舰舰载机弹药保障作业调度优化算法[J].航空学报, 2023, 44(20):230-247
[4]高亮, 张国辉, 王晓娟(Gao L, Zhang G H, Wang X J).柔性作业车间调度智能算法及其应用(Intelligent Algorithm for Flexible Job Shop Scheduling and its Application)[M]. 武汉: 华中科技大学出版社(Huazhong University of Science and Technology Press), 2012.
[5]袁泉, 马羚, 吕晓峰.母舰航空弹药转运流程规划方法[J].火力与指挥控制, 2024, 49(05):88-95
[6]韩庆田, 曹文静, 苏涛.基于遗传算法的舰载机保障流程研究[J].科学技术与工程, 2012, 12(35):9784-9787
[7]张洪亮, 刘建伟, 马羚, 等.基于离散粒子群的舰载机弹药调度[J].舰船电子工程, 2021, 41(04):146-149
[8]Yuan Q, Wang L, Zheng X, et al.Ammunition Scheduling of Shipboard Aircraft According to Improved Ant Colony Algorithm[C]//Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence. 2022: 1-7.
[9]Wang L, Li F, Huang J, et al.Optimization Design of Ammunition Scheduling Scheme for Carrier-based Aircraft based on Improved DPSO Algorithm[C]//Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence. 2022: 1-5.
[10]Zheng X, Li B, Wang L, et al.Design of Carrier Ammunition Scheduling Scheme Based on Improved Genetic Algorithm[C]//Proceedings of the 7th International Conference on Control Engineering and Artificial Intelligence.
[11] Liu M, Li G.Ammunition Scheduling Method in Airborne Weapon Depot Based on Improved Genetic Algorithm[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 1948(1): 012050.
[12]王丰, 李瑞鹏.航母航空弹药保障能力优化的可拓策略生成研究[J].兵工自动化, 2023, 42(06):8-11
[13]刘哲, 马俊飞, 陈佳峰, 等.基于改进灰狼算法的舰载机弹药保障调度优化[J].系统工程与电子技术, 2024, 46(4):1264-1272
[14]吕晓峰, 杨东泽, 马羚.基于改进遗传算法的舰载机弹药挂载调度[J].电光与控制, 2024, 31(01):82-86
[15]刘珏, 王能建, 罗旭, 等.采用改进遗传算法的舰载机保障调度方法[J].国防科技大学学报, 2020, 42(02):194-205
[16]陶俊权, 苏析超, 韩维, 等.基于 算法的航母弹药调度优化研究[J].兵器装备工程学报, 2022, 43(05):125-131
[17]Liu Y J, Han W, Su X C, et al.Optimization of fixed aviation support resource station configuration for aircraft carrier based on aircraft dispatch mission scheduling[J].Chinese Journal of Aeronautics, 2023, 36(2):127-138
[18]KAYHAN B M, YILDIZ G.Reinforcement Learning Applications to Machine Scheduling Problems: A Comprehensive Literature Review[J].Journal of Intelligent Manufacturing, 2023, 34(3):905-929
[19]钟敬伟, 石宇强.基于 的智能工厂作业车间调度[J].现代制造工程, 2021, 44(09):17-23
[20]王凌, 潘子肖.基于深度强化学习与迭代贪婪的流水车间调度优化[J].控制与决策, 2021, 36(11):2609-2617
[21]李宝帅, 叶春明.深度强化学习算法求解作业车间调度问题[J].计算机工程与应用, 2021, 57(23):248-254
[22]白天, 罗永亮, 刘敬, 等.基于变作业窗深度强化学习的舰面保障动态调度方法[J].船舶工程, 2021, 43(S2):117-123
[23]Chen S Y, Yu Y, Da Q, et al.Stabilizing reinforcement learning in dynamic environment with application to online recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining. 2018: 1187-1196.
[24]袁子龙, 何非, 赵建波, 等.航母舰载机保障作业任务分配及弹药转运调度优化方法[J].兵工学报, 2024, 46(10):1-16
[25]吕晓峰, 杨东泽, 马羚.舰载机模块化弹药调度方案优化设计[J].系统工程与电子技术, 2023, 45(02):465-471
[26]郭漩, 王宁, 于淑彤, 等.航空母舰多阶段弹药转运序列可视分析[J].计算机辅助设计与图形学学报, 2025, 36(02):1-9
[27]田德红, 何建敏, 齐洁, 等.航空弹药动态调运决策优化建模与仿真研究[J].西北工业大学学报, 2018, 36(06):1236-1242
[28]刘哲, 陈佳峰, 马俊飞, 等.舰载机弹药保障调度仿真系统[J].系统仿真学报, 2024, 36(07):1621-1630
[29]Schulman J, Wolski F, Dhariwal P, et al.Proximal policy optimization algorithms[J].[J].arXiv prep.[J].rXiv:1707.06347, 2017, :-
[30]Brittain M, Wei P.Hierarchical Reinforcement Learning with Deep Nested Agents[J].[J].arXiv prep.[J].rXiv:1805.07008, 2018, :-
[31]徐嘉琦, 田野.基于改进遗传算法的柔性流水车间调度研究[J].制造技术与机床, 2024, 74(04):181-187
文章导航

/