发展城市空中交通(Urban Air Mobility,UAM)迫切需要在充分考虑安全约束的基础上,以更低的运营成本服务更多的旅客。对此,基于电动垂直起降飞行器(electric Vertical Takeoff and Landing,eVTOL)性能,以最大旅客周转量和最小总成本为目标函数,增设最小安全间隔、最大乘客等待时间等约束条件,建立面向动态需求的eVTOL运输调度模型,并提出一种联合成本与调度的粒子群优化算法(Joint Optimization of Cost and Schedule-Particle Swarm Optimization,JOCS-PSO),求解最优调度方案。根据京津冀地区6个垂直起降点的旅客需求预测数据,进行异构eVTOL机队的规模与调度分配,调度结果表明使用170架EHang 216-S 型和177 架Geely Aerofugla AE200 X01 型eVTOL,在eVTOL 15年的使用周期内,共可周转124,076,676人次,人均成本为277.53元/人,在实现成本效益与服务效率平衡的基础上有显著的时间优势;此外,讨论了安全间隔对旅客周转量和成本的影响,计算结果指出若将安全间隔由1 min增加至6 min时,人均服务成本将增加4.1%,总服务人次将减少11.7%。
The development of Urban Air Mobility (UAM) urgently requires balancing cost-effectiveness and service efficiency by serving more passengers at lower operational costs while fully considering safety constraints. To address this, based on the performance of Electric Vertical Takeoff and Landing (eVTOL) vehicles, this study proposes a real-time demand-oriented eVTOL transport scheduling optimization model. The model uses total service population and total cost as objective functions, incorporating con-straints such as minimum safety intervals and maximum passenger waiting time. A Joint Optimization of Cost and Scheduling Particle Swarm Optimization (JOCS-PSO) algorithm is constructed to solve the optimal scheduling scheme. Using real-world data from the Beijing-Tianjin-Hebei region, the demand conditions between six vertiports are calculated. By deploying 170 EHang 216-S and 177 Geely Aerofugla AE200 X01 eVTOLs, a total of 124,076,676 passengers can be served over the 15-year lifecycle of the eVTOLs, with a per capita cost of 277.53 CNY and an average travel time saving of approximately 1.5 hours per passenger. When the safety interval is increased from 1 minute to 6 minutes, the per capita service cost increases by 4.1%, and the total number of passengers served decreases by 11.7%. The results demonstrate that the proposed scheme offers significant time-saving advantages while maintaining controllable costs.
[1] WU Z, ZHANG Y. Optimal eVTOL charging and passenger serving scheduling for on-demand urban air mobility; proceedings of the Aiaa Aviation 2020 Forum, F, 2020 [C].
[2] GUO Z, HAO M, LIU J, et al. Joint routing and charging optimization for eVTOL aircraft recovery [J]. 2022, 126: 107595.
[3] PAUL S, CHOWDHURY S. A graph-based rein-forcement learning framework for urban air mo-bility fleet scheduling; proceedings of the AIAA AVIATION 2022 Forum, F, 2022 [C].
[4] ROY S, KOTWICZ HERNICZEK M T, LEONARD C, et al. Flight scheduling and fleet sizing for an airport shuttle air taxi service [J]. 2022, 30(2): 49-58.
[5] KIM S H J I T O A, SYSTEMS E. Receding hori-zon scheduling of on-demand urban air mobility with heterogeneous fleet [J]. 2019, 56(4): 2751-61.
[6] LINDNER M, BRüHL R, BERGER M, et al. The Optimal Size of a Heterogeneous Air Taxi Fleet in Advanced Air Mobility: A Traffic Demand and Flight Scheduling Approach [J]. 2024, 4(1): 174-214.
[7] RAJENDRAN S J E S W A. Real-time dispatching of air taxis in metropolitan cities using a hybrid simulation goal programming algorithm [J]. 2021, 178: 115056.
[8] SHAO Q, SHAO M, LU Y J T R P C E T. Terminal area control rules and eVTOL adaptive scheduling model for multi-vertiport system in urban air Mo-bility [J]. 2021, 132: 103385.
[9] KLEINBEKMAN I. eVTOL arrival sequencing and scheduling in on-demand urban air mobility [J]. 2019.
[10] PRADEEP P, WEI P. Heuristic approach for arrival sequencing and scheduling for eVTOL aircraft in on-demand urban air mobility; proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), F, 2018 [C]. IEEE.
[11] BECKER K, TEREKHOV I, GOLLNICK V. A global gravity model for air passenger demand be-tween city pairs and future interurban air mobility markets identification; proceedings of the 2018 aviation technology, integration, and operations conference, F, 2018 [C].
[12] TEREKHOV I. Forecasting air passenger demand between settlements worldwide based on socio-economic scenarios [D]; DLR eV, 2017.
[13] UGWUEZE O, STATHEROS T, HORRI N, et al. An Efficient and Robust Sizing Method for eVTOL Aircraft Configurations in Conceptual Design [J]. 2023, 10(3): 311.
[14] EASA. Prototype Technical Design Specifications for Vertiports: [S]. Europe: 78-9.
[15] BULUSU V, ONAT E B, SENGUPTA R, et al. A traffic demand analysis method for urban air mo-bility [J]. 2021, 22(9): 6039-47.
[16] CHEN J. Integrated routing and charging schedul-ing for autonomous electric aerial vehicle system; proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), F, 2019 [C]. IEEE.
[17] 王莉莉, 张兆宁, 刘计民. 规定安全间隔的CNS性能环境研究[J]. 数学的实践与认识, 2011, 41(19): 22-9.
Wang L L, Zhang Z N, Liu J M. Research on CNS performance environment with specified safety in-tervals[J]. Mathematics in practice and theory, 2011, 41(19): 22-9.
[18] Y. WANG, J. LI, Y. YUAN and C. S. LAI. Optimiz-ing Urban Air Mobility: A Ground-Connected Ap-proach to Select Optimal eVTOL Takeoff and Landing Sites for Short-Distance Intercity Travel [J]. 2025, 6: 216-239. doi: 10.1109/OJVT.2024.3506277
[19] 中国民用航空总局. 中华人民共和国飞行基本规则: [S]. 北京: 2001: 2-4.
Civil Aviation Administration of China. Basic Flight Rules of the People’s Republic of China: [S]. Beijing: 2001:2-4
[20] 中国民用航空总局. 国家空域基本分类方法: [S]. 北京: 2023: 1-10.
Civil Aviation Administration of China. Basic Classification Method for National Airspace: [S]. Beijing: CAAC, 2023:1-10
[21] 中国民用航空总局. 关于就沃飞长空AE200-100型电动垂直起降航空器型号合格审定项目专用条件征求意见的通知 [EB/OL]. (2023.12.01)[2024.11.28] https://www.caac.gov.cn/HDJL/YJZJ/202312/t20231201_222195.html
Civil Aviation Administration of China. Notice on Soliciting Opinions on the Special Conditions for the Type Approval Project of Geely Aerofugla AE200 Electric Vertical Takeoff and Landing Air-craft [EB/OL].(2023.12.01)[2024.11.28] https://www.caac.gov.cn/HDJL/YJZJ/202312/t20231201_222195.html
[22] Vertical Flight Society. EHang EH216-S [EB/OL]. (2022.3) [2024.11.28] https://evtol.news/ehang-216/
[23] THIPPHAVONG D P. Analysis of electrical grid capacity by interconnection for urban air mobility; proceedings of the AIAA Aviation 2022 Forum, F, 2022 [C].
[24] 北京市发展和改革委员会. 北京市居民生活用电电价表 [EB/OL]. (2023.8.31) [2024.11.28]
Beijing Municipal Commission of Development and Reform [EB/OL]. (2023.8.31) [2024.11.28] https://fgw.beijing.gov.cn/bmcx/djcx/jzldj/202110/t20211025_2520169.htm
[25] GEISTER D, KORN B. Density based manage-ment concept for urban air traffic; proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Sys-tems Conference (DASC), F, 2018 [C]. IEEE.
[26] WANG Y, D’ARIANO A, YIN J, et al. Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line [J]. 2018, 118: 193-227.
[27] ALBA-MAESTRE J, BEYNE E, BUSZEK M, et al. Midterm Report—Multi-Disciplinary Design and Optimisation of a Long-Range eVTOL Aircraft [R]: Technical Report, 2021.