基于在线辨识的高速变构飞行器强适应控制
收稿日期: 2024-12-11
修回日期: 2025-04-07
录用日期: 2025-05-08
网络出版日期: 2025-05-27
基金资助
基础科研计划(JCKY2022110C019);教育部联合基金项目(8091B032223);中央高校基本科研业务费资助(DUT24RC(3)067)
Online identification based strong adaptive control of hypersonic morphing vehicles
Received date: 2024-12-11
Revised date: 2025-04-07
Accepted date: 2025-05-08
Online published: 2025-05-27
Supported by
Industrial Technology Development Program(JCKY2022110C019);Joint Fund Project of the Ministry of Education(8091B032223);Fundamental Research Funds for the Central Universities(DUT24RC(3)067)
针对高速变构飞行器在模型不确定、外界扰动以及非最小相位特性影响下的强适应控制问题,首先构建包含不确定性的动力学模型,依据模型特性将其分解为速度系统和姿态系统。设计基于修正遗忘因子的在线参数辨识方法,实时获取本体气动参数,降低对模型知识的依赖程度,为控制器实时提供模态评估信息。然后,提出博弈增强神经网络观测器处理包含辨识误差、变构不确定性、外界扰动在内的复合扰动,使系统对干扰的估计误差能在有限时间内收敛至原点。通过设计变构型-重定义策略重定义系统输出,针对性地给出变构型下的重定义参考指令,避免由升降舵和升力耦合产生的不稳定内动态。最后基于Lyapunov理论进行了系统稳定性分析,通过仿真验证了所提出方法的有效性。
刘泓麟 , 王冠 , 安帅斌 , 马少捷 , 刘凯 . 基于在线辨识的高速变构飞行器强适应控制[J]. 航空学报, 2025 , 46(17) : 331654 -331654 . DOI: 10.7527/S1000-6893.2025.31654
This paper investigates the robust adaptive control problem for high-speed morphing aircraft under model uncertainties, external disturbances, and non-minimum phase characteristics. First, a dynamic model incorporating uncertainties is established and subsequently decomposed into velocity and attitude subsystems based on system characteristics. A modified forgetting factor-based online parameter identification method is designed to estimate aerodynamic parameters in real-time, reducing reliance on prior model knowledge while providing real-time mode evaluation information for controller design. Subsequently, a game-enhanced neural network observer is proposed to handle composite disturbances, including identification errors, morphing uncertainties, and external disturbances, ensuring finite-time convergence of disturbance estimation errors to zero. By developing a morphing-redefinition strategy to reconfigure system outputs, specifically defined reference commands are generated for morphing configurations to avoid unstable internal dynamics caused by the coupling between elevators and lift. Finally, system stability is rigorously analyzed using Lyapunov theory, with simulation results validating the effectiveness of the proposed methodology.
| [1] | 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. |
| RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449 (in Chinese). | |
| [2] | 柯智骞, 骆俊衡, 马锐, 等. 宽域自适应变体飞行器技术研究进展[J]. 战术导弹技术, 2024(4): 16-29. |
| KE Z Q, LUO J H, MA R, et al. Research progress of wide-range adaptive morphing aircraft technology[J]. Tactical Missile Technology, 2024(4): 16-29 (in Chinese). | |
| [3] | 程归, 杨广, 郭宏伟, 等. 高超声速变体飞行器关键技术研究综述[J]. 航空科学技术, 2024, 35(5): 28-44. |
| CHENG G, YANG G, GUO H W, et al. Review on key technologies for hypersonic morphing aircraft[J]. Aeronautical Science & Technology, 2024, 35(5): 28-44 (in Chinese). | |
| [4] | 王帅, 晁涛, 韩宇辰, 等. 变体飞行器变形策略与控制方法研究进展[J]. 战术导弹技术, 2024(4): 1-15. |
| WANG S, CHAO T, HAN Y C, et al. Research progress on morphing strategies and control methods for morphing aircraft[J]. Tactical Missile Technology, 2024(4): 1-15 (in Chinese). | |
| [5] | 曹承钰, 李繁飙, 廖宇新, 等. 高超声速变外形飞行器建模与固定时间预设性能控制[J]. 自动化学报, 2024, 50(3): 486-504. |
| CAO C Y, LI F B, LIAO Y X, et al. Modeling and fixed-time prescribed performance control for hypersonic morphing vehicle[J]. Acta Automatica Sinica, 2024, 50(3): 486-504 (in Chinese). | |
| [6] | 张豪, 王鹏, 汤国建, 等. 高超声速变外形飞行器事件触发有限时间控制[J]. 航空学报, 2023, 44(15): 528494. |
| ZHANG H, WANG P, TANG G J, et al. Event-triggered fast finite time control for hypersonic morphing vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528494 (in Chinese). | |
| [7] | 马少捷, 惠俊鹏, 王宇航, 等. 变形飞行器深度强化学习姿态控制方法研究[J]. 航天控制, 2022, 40(6): 3-10. |
| MA S J, HUI J P, WANG Y H, et al. Research on attitude control method of morphing aircraft based on deep reinforcement learning[J]. Aerospace Control, 2022, 40(6): 3-10 (in Chinese). | |
| [8] | 张远, 黄万伟, 路坤锋, 等. 高超声速变外形飞行器建模与有限时间控制[J]. 北京航空航天大学学报, 2022, 48(10): 1979-1993. |
| ZHANG Y, HUANG W W, LU K F, et al. Modeling and finite-time control for hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993 (in Chinese). | |
| [9] | BAO C Y, WANG P, TANG G J. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics, 2021, 34(5): 535-553. |
| [10] | 殷明, 陆宇平, 何真, 等. 变体飞行器变形辅助机动的建模与滑模控制[J]. 系统工程与电子技术, 2015, 37(1): 128-134. |
| YIN M, LU Y P, HE Z, et al. Modeling and sliding mode control of morphing aircraft for morphing-aided maneuver[J]. Systems Engineering and Electronics, 2015, 37(1): 128-134 (in Chinese). | |
| [11] | 王子健, 张书宇, 侯明哲. 基于在线参数辨识的变体飞行器控制[J]. 兵器装备工程学报, 2022, 43(10): 60-65. |
| WANG Z J, ZHANG S Y, HOU M Z. Morphing aircraft control based on on-line parameter identification[J]. Journal of Ordnance Equipment Engineering, 2022, 43(10): 60-65 (in Chinese). | |
| [12] | 郭鸿飞, 宁国栋, 张科南, 等. 基于深度强化学习的变体飞行器智能参数整定[J]. 空天技术, 2024(5): 60-70, 80. |
| GUO H F, NING G D, ZHANG K N, et al. Intelligent parameter adjusting of morphing aircraft based on deep reinforcement learning[J]. Aerospace Technology, 2024(5): 60-70, 80 (in Chinese). | |
| [13] | WU K J, ZHANG P X, WU H. A new control design for a morphing UAV based on disturbance observer and command filtered backstepping techniques[J]. Science China Technological Sciences, 2019, 62(10): 1845-1853. |
| [14] | ZHANG H, WANG P, TANG G J, et al. Fuzzy disturbance observer-based fixed-time attitude control for hypersonic morphing vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 6577-6593. |
| [15] | CHEN H L, WANG P, TANG G J. Fuzzy disturbance observer-based fixed-time sliding mode control for hypersonic morphing vehicles with uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3521-3530. |
| [16] | 周雨欣, 王鹏, 汤国建, 等. 基于干扰观测器的变形飞行器预设性能控制[J]. 战术导弹技术, 2024(4): 72-82. |
| ZHOU Y X, WANG P, TANG G J, et al. Disturbance observer-based prescribed performance control for morphing aircraft[J]. Tactical Missile Technology, 2024(4): 72-82 (in Chinese). | |
| [17] | CHEN H L, WANG P, TANG G J. Prescribed-time control for hypersonic morphing vehicles with state error constraints and uncertainties[J]. Aerospace Science and Technology, 2023, 142: 108671. |
| [18] | 陈宇腾, 常晶, 陈为胜, 等. 一种高超声速飞行器的纵向变形与飞行最优协调控制方法[J]. 宇航学报, 2025, 46(3): 485-498. |
| CHEN Y T, CHANG J, CHEN W S, et al. Optimal integrated method design for longitudinal morphing and flight control of hypersonic vehicles[J]. Journal of Astronautics, 2025, 46(3): 485-498 (in Chinese). | |
| [19] | GUO Z Y, CAO S Y, YUAN R Z, et al. Reinforcement learning-based integrated decision-making and control for morphing flight vehicles under aerodynamic uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(6): 9342-9353. |
| [20] | BAO C Y, WANG P, TANG G J. Data-driven based model-free adaptive optimal control method for hypersonic morphing vehicle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3713-3725. |
| [21] | CAO C Y, LI F B, DING R, et al. Intelligent attitude control for morphing flight vehicle: A deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2025, 74(6): 8851-8865. |
| [22] | YE L Q, ZONG Q, TIAN B L, et al. Control-oriented modeling and adaptive backstepping control for a nonminimum phase hypersonic vehicle[J]. ISA Transactions, 2017, 70: 161-172. |
| [23] | PARKER J T, SERRANI A, YURKOVICH S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856-869. |
| [24] | FIORENTINI L, SERRANI A. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model[J]. Automatica, 2012, 48(7): 1248-1261. |
| [25] | XU B, WANG X, SHI Z K. Robust adaptive neural control of nonminimum phase hypersonic vehicle model[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(2): 1107-1115. |
| [26] | 晁涛, 王雨潇, 王松艳, 等. 考虑非最小相位特性的高超声速飞行器轨迹跟踪控制[J]. 系统工程与电子技术, 2018, 40(7): 1548-1553. |
| CHAO T, WANG Y X, WANG S Y, et al. Trajectory tracking control for non-minimum phase hypersonic vehicles[J]. Systems Engineering and Electronics, 2018, 40(7): 1548-1553 (in Chinese). | |
| [27] | WANG Y X, CHAO T, WANG S Y, et al. Byrnes-Isidori-based dynamic sliding-mode control for nonminimum phase hypersonic vehicles[J]. Aerospace Science and Technology, 2019, 95: 105478. |
| [28] | 曹承钰, 廖宇新, 曹玉腾, 等. 基于气动参数辨识的变体飞行器自适应控制方法[J]. 控制与信息技术, 2022(3): 8-16. |
| CAO C Y, LIAO Y X, CAO Y T, et al. Aerodynamic parameter identification based adaptive control for morphing vehicle[J]. Control and Information Technology, 2022(3): 8-16 (in Chinese). | |
| [29] | 刘昊东, 张庆振, 郭云鹤, 等. 基于递推最小二乘法的变体飞行器模型参数在线辨识[J]. 空天防御, 2020, 3(3): 103-110. |
| LIU H D, ZHANG Q Z, GUO Y H, et al. Online identification of morphing aircraft model parameters based on recursive least square method[J]. Air & Space Defense, 2020, 3(3): 103-110 (in Chinese). |
/
| 〈 |
|
〉 |