基于在线辨识的高速变构飞行器强适应控制

  • 刘泓麟 ,
  • 王冠 ,
  • 安帅斌 ,
  • 马少杰 ,
  • 刘凯
展开
  • 1. 大连理工大学
    2. 中国运载火箭技术研究院

收稿日期: 2024-12-11

  修回日期: 2025-05-20

  网络出版日期: 2025-05-27

基金资助

中央高校基本科研业务费专项资金项目;国家自然科学基金

Online identification based strong adaptive control of hypersonic morphing vehicles

  • LIU Hong-Lin ,
  • WANG Guan ,
  • AN Shuai-Bin ,
  • MA Shao-Jie ,
  • LIU Kai
Expand

Received date: 2024-12-11

  Revised date: 2025-05-20

  Online published: 2025-05-27

摘要

研究了高速变构飞行器在模型不确定、外界扰动以及非最小相位特性影响下的强适应控制问题。首先构建包含不确定性的动力学模型,依据模型特性将其分解为速度系统和姿态系统。设计基于修正遗忘因子的在线参数辨识方法获取本体状态,降低对模型知识的依赖程度,为控制器实时提供模态评估信息。然后,提出博弈增强神经网络观测器处理包含辨识误差、变构不确定性、外界扰动在内的复合扰动,使系统对干扰的估计误差能在有限时间内收敛至原点。通过设计变构型-重定义策略重定义系统输出,针对性地给出变构型下的重定义参考指令,避免由升降舵和升力耦合产生的不稳定内动态。最后基于Lyapunov稳定性定理进行了系统稳定性理论分析,通过仿真验证了所给方法的有效性。

本文引用格式

刘泓麟 , 王冠 , 安帅斌 , 马少杰 , 刘凯 . 基于在线辨识的高速变构飞行器强适应控制[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31654

Abstract

This paper studies strong adaptive control problem of hypersonic morphing vehicles under the model uncertainty, external disturbance and non-minimum phase characteristics. Firstly, a dynamic model with uncertainties is con-structed, which is decomposed into a velocity system and an attitude system according to the characteristics of the model. An online parameter identification method based on modified forgetting factor is designed to obtain the ontology state, reduce the dependence on model knowledge, and provide real-time modal evaluation information for the controller. Then, a game-enhanced neural network observer is proposed to deal with the composite disturb-ance including identification error, variant uncertainty and external disturbance, so that the estimation error of the system can converge to the origin in a finite time. By designing the variable configuration-redefinition strategy to redefine the system output, the redefinition reference command under the variable configuration is given to avoid the unstable internal dynamics caused by the coupling of elevator and lift. Finally, the theoretical analysis of system stability is carried out based on Lyapunov stability theorem, and the effectiveness of the proposed method is veri-fied by simulation.

参考文献

[1] 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 432-449.
[2] 柯智骞, 骆俊衡, 马锐, 等. 宽域自适应变体飞行器技术研究进展[J]. 战术导弹技术, 2024, (04): 16-29.
[3] 程归, 杨广, 郭宏伟, 等. 高超声速变体飞行器关键技术研究综述[J]. 航空科学技术, 2024, 35(05): 28-44.
[4] 王帅, 晁涛, 韩宇辰, 等. 变体飞行器变形策略与控制方法研究进展[J]. 战术导弹技术, 2024, (04): 1-15.
[5] 曹承钰, 李繁飙, 廖宇新, 等. 高超声速变外形飞行器建模与固定时间预设性能控制[J]. 自动化学报, 2024, 50(3): 486-504.
[6] 张豪, 王鹏, 汤国建, 等. 高超声速变外形飞行器事件触发有限时间控制[J]. 航空学报, 2023, 44(15): 333-346.
[7] 马少捷, 惠俊鹏, 王宇航, 等. 变形飞行器深度强化学习姿态控制方法研究[J]. 航天控制, 2022, 40(6): 3-10.
[8] 张远,黄万伟,路坤锋,等.高超声速变外形飞行器建模与有限时间控制[J].北京航空航天大学学报, 2022, 48(10): 1979-1993.
[9] WANG P, TANG G. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics, 2021, 34(05): 535-553.
[10] 殷明, 陆宇平, 何真, 等. 变体飞行器变形辅助机动的建模与滑模控制[J].系统工程与电子技术, 2015, 37(01): 128-134.
[11] 王子健,张书宇,侯明哲.基于在线参数辨识的变体飞行器控制[J]. 兵器装备工程学报, 2022, 43(10): 60-65.
[12] WU K, ZHANG P, WU H. A new control design for a morphing UAV based on disturbance observer and command filtered backstepping techniques[J]. Science China Technological Sciences, 2019, 62(10): 1845-1853.
[13] ZHANG H, WANG P, TANG G, et al. Fuzzy Disturb-ance Observer-based Fixed-time Attitude Control for Hypersonic Morphing Vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024: 1-19. DOI:10.1109/TAES.2024.3404911.
[14] CHEN H, WANG P, TANG G. Fuzzy Disturbance Observer-Based Fixed-Time Sliding Mode Control for Hypersonic Morphing Vehicles With Uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3521-3530.
[15] 周雨欣, 王鹏, 汤国建, 等. 基于干扰观测器的变形飞行器预设性能控制[J]. 战术导弹技术, 2024(4): 72-82..
[16] CHEN H, WANG P, TANG G. Prescribed-time control for hypersonic morphing vehicles with state error con-straints and uncertainties[J]. Aerospace Science and Technology, 2023, 142: 108671.
[17] YE L, ZONG Q, TIAN B, et al. Control-oriented mod-eling and adaptive backstepping control for a nonmini-mum phase hypersonic vehicle[J]. ISA Transac-tions,2017, 70:161-172.
[18] PARKER J T, SERRANI A, YURKOVICH S, et al. Control-oriented modeling of an air-breathing hyperson-ic vehicle[J]. Journal of Guidance, Control, and Dynam-ics, 2007, 30(3):856-869.
[19] FIORENTINI L, SERRANI A. Adaptive restricted trajectory tracking for a nonminimum phase hypersonic vehicle model[J]. Automatica, 2012, 48(7):1248-1261.
[20] XU B, WANG X, SHI Z. Robust adaptive neural con-trol of nonminimum phase hypersonic vehicle model[J]. IEEE Transactions on Systems, Man, and Cybernet-ics:Systems, 2019, 51(2):1107-1115.
[21] 晁涛, 王雨潇, 王松艳, 等. 考虑非最小相位特性的高超声速飞行器轨迹跟踪控制[J]. 系统工程与电子技术, 2018, 466(7):137-142.
[22] WANG Y, CHAO T, WANG S, et al. Byrnes-isidori-based dynamic sliding-mode control for nonminimum phase hypersonic vehicles[J]. Aerospace Science and Technology, 2019, 95:105478.
[23] BAO C, Wang P, Tang G. Integrated method of guid-ance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics, 2021, 34(5): 535-553.
[24] Fiorentini L, Serrani A. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model[J]. Automatica, 2012, 48(7): 1248-1261.
[25] 王子健, 张书宇, 侯明哲. 基于在线参数辨识的变体飞行器控制[J]. 兵器装备工程学报, 2022, 43(10): 60-65.
[26] 曹承钰, 廖宇新, 曹玉腾, 等. 基于气动参数辨识的变体飞行器自适应控制方法[J]. 控制与信息技术, 2022(3): 8-16.
[27] 刘昊东, 张庆振, 郭云鹤, 等. 基于递推最小二乘法的变体飞行器模型参数在线辨识[J]. 空天防御, 2020, 3(3): 103-110.
文章导航

/