双燃烧室冲压发动机对硼基推进剂的促燃效果
收稿日期: 2025-01-09
修回日期: 2025-02-18
录用日期: 2025-05-06
网络出版日期: 2025-05-08
基金资助
国家自然科学基金(U21B2086)
Combustion enhancement effect of dual combustor ramjet engines on boron-based propellants
Received date: 2025-01-09
Revised date: 2025-02-18
Accepted date: 2025-05-06
Online published: 2025-05-08
Supported by
National Natural Science Foundation of China(U21B2086)
为研究双燃烧室冲压发动机(DCR)构型对硼基推进剂的促燃效果及其对发动机性能的增益,选取超燃冲压发动机(SCR)作为对比。结果表明,相较于SCR,得益于亚燃室的高温高压环境,DCR在马赫数5@高28 km(工况1)和马赫数6@高30 km(工况2)下均能有效促进硼基推进剂的燃烧;且总压损失较小,发动机性能较好。在工况1,DCR在1.5、2、2.5 m发动机长度下的燃烧效率较SCR分别高26.6%、27.2%和23.8%,比冲分别高1 964、1 970、1 406 m/s;在工况2,DCR对应燃烧效率较SCR分别高27.9%、22.3%和22.9%,比冲分别高1 615、1 393、960 m/s。发动机长度越短,DCR相较于SCR的性能优势越显著,表明在空间受限的应用场景中优先选用DCR构型。
吴宪举 , 魏志军 , 王云辉 , 周凌 , 冯滢 . 双燃烧室冲压发动机对硼基推进剂的促燃效果[J]. 航空学报, 2025 , 46(18) : 131788 -131788 . DOI: 10.7527/S1000-6893.2025.31788
To investigate the combustion enhancement effect of the Dual Combustor Ramjet engine (DCR) configuration on boron-based propellants and its contribution to engine performance, the scramjet engine (SCR) was selected for comparison. The results indicate that, compared to SCR, the DCR effectively promotes the combustion of boron-based propellants under the conditions of Ma=5 at 28 km height (Case 1) and Ma=6 at 30 km height (Case 2), benefiting from the high-temperature and high-pressure environment of the subsonic combustor, while maintaining relatively low total pressure loss and better engine performance. In Case 1, the combustion efficiency of DCR is higher than that of SCR by 26.6%, 27.2%, and 23.8% for engine lengths of 1.5 m, 2 m, and 2.5 m, respectively, with specific impulses of 1 964 m/s, 1 970 m/s, and 1 406 m/s. In Case 2, DCR shows combustion efficiencies higher than SCR by 27.9%, 22.3 %, and 22.9 %, with specific impulses of 1 615 m/s, 1 393 m/s, and 960 m/s, respectively. The shorter the engine length, the more pronounced the performance advantage of DCR over SCR, indicating that DCR is preferable in space-constrained application scenarios.
| [1] | PANG W Q, DE LUCA L T, FAN X Z, et al. Boron-based fuel-rich propellant: properties, combustion, and technology aspects[M]. New York: CRC press, 2019. |
| [2] | 夏智勋, 陈斌斌, 黄利亚, 等. 固体火箭冲压发动机技术研究进展[J]. 上海航天, 2019, 36(6): 11-18. |
| XIA Z X, CHEN B B, HUANG L Y, et al. Research progresses in solid rocket-ramjet engine[J]. Aerospace Shanghai, 2019, 36(6): 11-18 (in Chinese). | |
| [3] | KADOSH H, NATAN B. Internal ballistics of a boron-containing solid fuel ramjet[J]. Combustion Science and Technology, 2021, 193(15): 2672-2691. |
| [4] | NATAN B, HADDAD A, ARIELI R. Performance assessments of a boron containing gel fuel ramjet[C]∥ 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
| [5] | MEINK?HN D. Metal-particle ignition and oxide-layer instability[J]. Combustion, Explosion and Shock Waves, 2006, 42(2): 158-169. |
| [6] | MEINKO¨HN D. Boron particle ignition and the Marangoni effect[J]. Combustion Science and Technology, 2004, 176(9): 1493-1536. |
| [7] | CHEN B H, SHAN S Q, LIU J Z. Evolution of solid-liquid coupling combustion characteristics of boron suspension fuel in O2/Ar atmosphere[J]. Combustion and Flame, 2022, 237: 111869. |
| [8] | PANG W Q, YETTER R A, DELUCA L T, et al. Boron-based composite energetic materials (B-CEMs): preparation, combustion and applications[J]. Progress in Energy and Combustion Science, 2022, 93: 101038. |
| [9] | HAN L K, WANG R D, CHEN W Y, et al. Preparation and combustion mechanism of boron-based high-energy fuels[J]. Catalysts, 2023, 13(2): 378. |
| [10] | YOUNG G, SULLIVAN K, ZACHARIAH M R, et al. Combustion characteristics of boron nanoparticles[J]. Combustion and Flame, 2009, 156(2): 322-333. |
| [11] | 席剑飞, 刘建忠, 李和平, 等. 促进硼颗粒点火和燃烧的方法的研究进展[J]. 含能材料, 2013, 21(4): 533-538. |
| XI J F, LIU J Z, LI H P, et al. Progress in methods of promoting the ignition and combustion of boron particles[J]. Chinese Journal of Energetic Materials, 2013, 21(4): 533-538 (in Chinese). | |
| [12] | CHINTERSINGH K L, SCHOENITZ M, DREIZIN E L. Effect of purity, surface modification and iron coating on ignition and combustion of boron in air[J]. Combustion Science and Technology, 2021, 193(9): 1567-1586. |
| [13] | 郝利峰, 张丽, 唐时敏, 等. 含硼富燃料推进剂的技术现状与发展趋势[J]. 化学推进剂与高分子材料, 2015, 13(3): 1-7, 20. |
| HAO L F, ZHANG L, TANG S M, et al. Technology status and development trends of boron-containing fuel-rich propellants[J]. Chemical Propellants & Polymeric Materials, 2015, 13(3): 1-7, 20 (in Chinese). | |
| [14] | LIU Y, WANG W, ZHAO B D, et al. Synergistic enhancement on ignition and combustion properties of boron via viton core-shell coating[J]. Langmuir, 2024, 40(23): 12239-12249. |
| [15] | CHINTERSINGH K L, SCHOENITZ M, DREIZIN E L. Combustion of boron and boron-iron composite particles in different oxidizers[J]. Combustion and Flame, 2018, 192: 44-58. |
| [16] | HUANG S D, DENG S L, JIANG Y, et al. Experimental effective metal oxides to enhance boron combustion[J]. Combustion and Flame, 2019, 205: 278-285. |
| [17] | MURSALAT M, SCHOENITZ M, DREIZIN E L. Effect of particle morphology on reactivity, ignition and combustion of boron powders[J]. Fuel, 2022, 324: 124538. |
| [18] | BILLIG F S, WALTRUP P J, STOCKBRIDGE R D. Integral-rocket dual-combustion ramjets: a new propulsion concept[J]. Journal of Spacecraft and Rockets, 1980, 17(5): 416-424. |
| [19] | 吴宪举, 魏志军, 王宁飞, 等. 双燃烧室冲压发动机增强燃烧及发动机性能研究[J]. 推进技术, 2024, 45(8): 117-129. |
| WU X J, WEI Z J, WANG N F, et al. Enhanced combustion and engine performance of dual-combustion ramjet[J]. Journal of Propulsion Technology, 2024, 45(8): 117-129 (in Chinese). | |
| [20] | WU X J, WEI Z J. Comparison of dual-combustion ramjet and scramjet performances considering combustion efficiency[J]. Applied Sciences, 2023, 13(1): 480. |
| [21] | WU X J, WEI Z J. Analysis of the characteristics of scramjet mode and ramjet mode of axisymmetric dual-combustion ramjet[J]. Acta Astronautica, 2023, 203: 125-134. |
| [22] | BROWN R C, KOLB C E, CHO S Y, et al. Kinetics of high temperature, hydrocarbon assisted boron combustion[M]∥ Gas Phase Metal Reactions. Amsterdam: Elsevier, 1992: 643-660. |
| [23] | YETTER R A, RABITZ H, DRYER F L, et al. Kinetics of high-temperature B/O/H/C chemistry[J]. Combustion and Flame, 1991, 83(1-2): 43-62. |
| [24] | ZHOU W, YETTER R A, DRYER F L, et al. Multi-phase model for ignition and combustion of boron particles[J]. Combustion and Flame, 1999, 117(1-2): 227-243. |
| [25] | KING M K. Boron ignition and combustion in air-augmented rocket afterburners[J]. Combustion Science and Technology, 1972, 5(1): 155-164. |
| [26] | KING M K. Boron particle ignition in hot gas streams[J]. Combustion Science and Technology, 1973, 8(5-6): 255-273. |
| [27] | KING M K. Ignition and combustion of boron particles and clouds[J]. Journal of Spacecraft and Rockets, 1982, 19(4): 294-306. |
| [28] | KING M K. A review of studies of boron ignition and combustion phenomena at Atlantic research corporation over the past decade[J]. International Journal of Energetic Materials and Chemical Propulsion, 1991, 2(1-6): 1-80. |
| [29] | LI S C. Experimental and theoretical studies of ignition and combustion of boron particles in wet and dry atmospheres[D]. USA: Princeton University, 1990. |
| [30] | LI S C, WILLIAMS F A. Ignition and combustion of boron in wet and dry atmospheres[J]. Symposium (International) on Combustion, 1991, 23(1): 1147-1154. |
| [31] | DREIZIN E L. Effect of phase changes on metal‐particle combustion processes[J]. Combustion, Explosion and Shock Waves, 2003, 39(6): 681-693. |
| [32] | YEH C L, KUO K K. Ignition and combustion of boron particles[J]. Progress in Energy and Combustion Science, 1996, 22(6): 511-541. |
| [33] | ULAS A, KUO K K, GOTZMER C. Ignition and combustion of boron particles in fluorine-containing environments[J]. Combustion and Flame, 2001, 127(1-2): 1935-1957. |
| [34] | HUSSMANN B, PFITZNER M. Extended combustion model for single boron particles-PartⅠ: Theory[J]. Combustion and Flame, 2010, 157(4): 803-821. |
| [35] | HUSSMANN B, PFITZNER M. Extended combustion model for single boron particles-Part Ⅱ: Validation[J]. Combustion and Flame, 2010, 157(4): 822-833. |
| [36] | KALPAKLI B, ACAR E B, ULAS A. Improved combustion model of boron particles for ducted rocket combustion chambers[J]. Combustion and Flame, 2017, 179: 267-279. |
| [37] | CHEN B B, XIA Z X, HUANG L Y, et al. Ignition and combustion model of a single boron particle[J]. Fuel Processing Technology, 2017, 165: 34-43. |
| [38] | WU X J, WEI Z J. Multiphase ignition and combustion model and its characteristics of boron particles based on dynamic experimental phenomena[J]. Combustion and Flame, 2024, 265: 113445. |
| [39] | 秦飞, 何国强, 刘佩进, 等. 圆形燃烧室支板火箭超燃冲压发动机数值模拟[J]. 固体火箭技术, 2011, 34(2): 150-155. |
| QIN F, HE G Q, LIU P J, et al. Numerical simulation of strut-rocket scramjet with circular combustor[J]. Journal of Solid Rocket Technology, 2011, 34(2): 150-155 (in Chinese). | |
| [40] | 于江飞, 晏至辉, 刘卫东. 双燃烧室冲压发动机为动力的高超声速飞行器[J]. 导弹与航天运载技术, 2008(5): 26-30. |
| YU J F, YAN Z H, LIU W D. Hypersonic vehicle with dual-combustor ramjet[J]. Missiles and Space Vehicles, 2008(5): 26-30 (in Chinese). | |
| [41] | LI C L, ZHAO X, XIA Z X, et al. Influence of the vortex generator on the performance of solid rocket scramjet combustor[J]. Acta Astronautica, 2019, 164: 174-183. |
/
| 〈 |
|
〉 |