双燃烧室冲压发动机对硼基推进剂的促燃效果

  • 吴宪举 ,
  • 魏志军 ,
  • 王云辉 ,
  • 周凌 ,
  • 冯滢
展开
  • 1. 北京理工大学
    2. 台州学院
    3. 北京理工大学宇航学院
    4. Beijing Institute of Technology

收稿日期: 2025-01-09

  修回日期: 2025-05-07

  网络出版日期: 2025-05-08

基金资助

国家自然科学基金

The combustion enhancement effect of dual combustor ramjet engines on boron-based pro-pellants

  • WU Xian-Ju ,
  • WEI Zhi-Jun ,
  • WANG Yun-Hui ,
  • ZHOU Ling ,
  • FENG Ying
Expand

Received date: 2025-01-09

  Revised date: 2025-05-07

  Online published: 2025-05-08

摘要

为研究双燃烧室冲压发动机(DCR)构型对硼基推进剂的促燃效果及其对发动机性能的增益,选取超燃冲压发动机(SCR)作为对比。结果表明,相较于SCR,得益于亚燃室的高温高压环境,DCR在Ma 5@H28 km(工况一)和Ma 6@30 km(工况二)下均能有效促进硼基推进剂的燃烧,且总压损失较小,发动机性能较好。在工况一时,DCR在1.5 m、2 m和2.5 m发动机长度下的燃烧效率较SCR分别高26.6 %、27.2 %和23.8 %,比冲分别高1964 m/s、1970 m/s和1406 m/s;在工况二下,DCR对应燃烧效率较SCR分别高27.9 %、22.3 %和22.9 %,比冲分别高1615 m/s、1393 m/s和960 m/s。发动机长度越短,DCR相较于SCR的性能优势越显著,表明在空间受限的应用场景中优先选用DCR构型。

本文引用格式

吴宪举 , 魏志军 , 王云辉 , 周凌 , 冯滢 . 双燃烧室冲压发动机对硼基推进剂的促燃效果[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31788

Abstract

To investigate the combustion enhancement effect of the dual combustor ramjet engine (DCR) configuration on boron-based propellants and its contribution to engine performance, this study selects the scramjet engine (SCR) as a comparison. The results indicate that, compared to SCR, the DCR effectively promotes the combustion of boron-based propellants under the conditions of Ma 5 at H28 km (Case 1) and Ma 6 at 30 km (Case 2), benefiting from the high-temperature and high-pressure environment of the subsonic combustor, while maintaining relatively low total pressure loss and better engine performance. In Case 1, the com-bustion efficiency of DCR is higher than that of SCR by 26.6 %, 27.2 %, and 23.8 % for engine lengths of 1.5 m, 2 m, and 2.5 m, respectively, with specific impulses of 1964 m/s, 1970 m/s, and 1406 m/s. In Case 2, DCR shows combustion efficiencies higher than SCR by 27.9 %, 22.3 %, and 22.9 %, with specific impulses of 1615 m/s, 1393 m/s, and 960 m/s, respectively. The shorter the engine length, the more pronounced the performance advantage of DCR over SCR, indicating that DCR is preferable in space-constrained application scenarios.

参考文献

[1] PANG W, DE LUCA L, FAN X, et al. Boron-based fuel-rich propellant: properties, combustion, and technology aspects[M]. Boca Raton, London, New York: CRC press, 2019.
[2] 夏智勋,陈斌斌,黄利亚,等. 固体火箭冲压发动机技术研究进展[J]. 上海航天, 2019, 36(06): 11-18.
XIA Z, CHEN B, HUANG L, et al. Research progresses in solid rocket-ramjet engine[J]. Aerospace Shanghai 2019, 36(06): 11-18(in Chinese).
[3] KADOSH H, NATAN B. Internal ballistics of a boron-containing solid fuel ramjet[J]. Combustion Science and Technology, 2021, 193(15): 2672-2691.
[4] NATAN B, HADDAD A, ARIELI R. Performance as-sessments of a boron containing gel fuel ramjet[C]. Flor-ida: 2009.
[5] MEINKOHN D. Metal-particle ignition and oxide-layer instability[J]. Combustion, Explosion, and Shock Waves, 2006, 42(2): 158-169.
[6] MEINKOHN D. Boron particle ignition and the maran-goni effect[J]. Combustion Science and Technology, 2004, 176(9): 1493-1536.
[7] CHEN B, SHAN S, LIU J. Evolution of solid-liquid coupling combustion characteristics of boron suspen-sion fuel in O2/Ar atmosphere[J]. Combustion and Flame, 2022, 237: 111869.
[8] PANG W, YETTER R A, DELUCA L T, et al. Boron-based composite energetic materials (B-CEMs): Prepara-tion, combustion and applications[J]. Progress in Ener-gy and Combustion Science, 2022, 93: 101038.
[9] HAN L, WANG R, CHEN W, et al. Preparation and combustion mechanism of boron-based high-energy fuels[J]. Catalysts, 2023, 13(2): 378.
[10] YOUNG G, SULLIVAN K, ZACHARIAH M, et al. Combustion characteristics of boron nanoparticles[J]. Combustion and Flame, 2009, 156(2): 322-333.
[11] 席剑飞,刘建忠,李和平,等. 促进硼颗粒点火和燃烧的方法的研究进展[J]. 含能材料, 2013(4): 533-538.
XI J, LIU J, LI H, et al. Progress in methods of promot-ing the ignition and combustion of boron particles[J]. Chinese Jounal of Energetic Materials. 2013(4): 533-538(in Chinese).
[12] CHINTERSINGH K, SCHOENITZ M, DREIZIN E L. Effect of purity, surface modification and iron coating on ignition and combustion of boron in air[J]. Combus-tion Science and Technology, 2021, 193(9): 1567-1586.
[13] 郝利峰,张丽,唐时敏,等. 含硼富燃料推进剂的技术现状与发展趋势[J]. 化学推进剂与高分子材料, 2015, 13(03): 1-7.
Hao L, Zhang L, Tang S, et al. Technology status and de-velopment trends of boron-containing fuel-rich pro-pel-lants[J]. Chemical Propellants & Polymeric Materi-als. 2015, 13(03): 1-7(in Chinese).
[14] LIU Y, WANG W, ZHAO B, et al. Synergistic enhance-ment on ignition and combustion properties of boron via viton core-shell coating[J]. Langmuir, 2024.
[15] CHINTERSINGH K, SCHOENITZ M, DREIZIN E L. Combustion of boron and boron–iron composite parti-cles in different oxidizers[J]. Combustion and Flame, 2018, 192: 44-58.
[16] HUANG S, DENG S, JIANG Y, et al. Experimental ef-fective metal oxides to enhance boron combustion[J]. Combustion and Flame, 2019, 205: 278-285.
[17] MURSALAT M, SCHOENITZ M, DREIZIN E L. Effect of particle morphology on reactivity, ignition and com-bustion of boron powders[J]. Fuel, 2022, 324: 124538.
[18] BILLIG F S, WALTRUP P J, STOCKBRIDGE R D. Integral-rocket dual-combustion ramjets: a new propul-sion concept[J]. Journal of Spacecraft and Rockets, 1980, 17(5): 416-424.
[19] 吴宪举,魏志军,王宁飞,等. 双燃烧室冲压发动机增强燃烧及发动机性能研究[J]. 推进技术, 2024.
WU X, WEI Z, WANG N, et al. Enhanced combustion and engine performance of dual-combustion ramjet[J]. Jour-nal of Propulsion Technology. 2024, 45(8) (in Chinese).
[20] WU X, WEI Z. Comparison of dual-combustion ramjet and scramjet performances considering combustion effi-ciency[J]. Applied Sciences, 2023, 13(1): 480.
[21] WU X, WEI Z. Analysis of the characteristics of scram-jet mode and ramjet mode of axisymmetric dual-combustion ramjet[J]. Acta Astronautica, 2023, 203: 125-134.
[22] BROWN R C, KOLB C E, CHO S Y, et al. Kinetics of high temperature, hydrocarbon assisted boron combus-tion[M]. Gas Phase Metal Reactions, Fontijn A, Amster-dam:Elsevier, 1992, 643-660.
[23] YETTER R A, RABITZ H, DRYER F L, et al. Kinetics of high-temperature B/O/H/C chemistry[J]. Combustion and Flame, 1991, 83(1): 43-62.
[24] ZHOU W, YETTER R A, DRYER F L, et al. Multi-phase model for ignition and combustion of boron par-ticles[J]. Combustion and Flame, 1999, 117(1): 227-243.
[25] KING M K. Boron ignition and combustion in air-augmented rocket afterburners[J]. Combustion Science and Technology, 1972, 5(1): 155-164.
[26] KING M K. Boron particle ignition in hot gas streams[J]. Combustion Science and Technology, 1973, 8(5-6): 255-273.
[27] KING M K. Ignition and combustion of boron particles and clouds[J]. Journal of Spacecraft and Rockets, 1982, 19(4): 294-306.
[28] KING M K. A review of studies of boron ignition and combustion phenomena at Atlantic research corporation over the past decade[J]. International Journal of Energet-ic Materials and Chemical Propulsion, 1991, 2(1-6): 1-80.
[29] LI S. Experimental and theoretical studies of ignition and combustion of boron particles in wet and dry at-mospheres[D]. 1990.
[30] LI S C, WILLIAMS F A. Ignition and combustion of boron in wet and dry atmospheres[J]. Symposium (In-ternational) On Combustion, 1991, 23(1): 1147-1154.
[31] DREIZIN E L. Effect of phase changes on metal-particle combustion processes[J]. Combustion, Explosion, and Shock Waves, 2003, 39(6): 681-693.
[32] YEH C L, KUO K K. Ignition and combustion of boron particles[J]. Progress in Energy and Combustion Science, 1996, 22(6): 511-541.
[33] ULAS A, KUO K K, GOTZMER C. Ignition and com-bustion of boron particles in fluorine-containing envi-ronments[J]. Combustion and Flame, 2001, 127(1-2): 1935-1957.
[34] HUSSMANN B, PFITZNER M. Extended combustion model for single boron particles – Part I: Theory[J]. Combustion and Flame, 2010, 157(4): 803-821.
[35] HUSSMANN B, PFITZNER M. Extended combustion model for single boron particles – Part II: Valida-tion[J]. Combustion and Flame, 2010, 157(4): 822-833.
[36] KALPAKLI B, ACAR E B, ULAS A. Improved combus-tion model of boron particles for ducted rocket combus-tion chambers[J]. Combustion and Flame, 2017, 179: 267-279.
[37] CHEN B, XIA Z, HUANG L, et al. Ignition and combus-tion model of a single boron particle[J]. Fuel Processing Technology, 2017, 165: 34-43.
[38] WU X, WEI Z. Multiphase ignition and combustion model and its characteristics of boron particles based on dynamic experimental phenomena[J]. Combustion and Flame, 2024, 265: 113445.
[39] 秦飞,何国强,刘佩进,等. 圆形燃烧室支板火箭超燃冲压发动机数值模拟[J]. 固体火箭技术, 2011, 34(02): 150-155.
QIN F, HE G, LIU P, et al. Numerical simulation of strut-rocket scramjet with circular combustor[J]. Journal of Solid Rocket Technology. 2011, 34(02): 150-155(in Chi-nese).
[40] 于江飞,晏至辉,刘卫东. 双燃烧室冲压发动机为动力的高超声速飞行器[J]. 导弹与航天运载技术, 2008(05): 26-30.
Yu J, Yan Z, Liu W. Hypersonic vehicle with dual-combustor ramjet[J]. Missile and Space Vehcile. 2008(05): 26-30(in Chinese).
[41] LI C, ZHAO X, XIA Z, et al. Influence of the vortex generator on the performance of solid rocket scramjet combustor[J]. Acta Astronautica, 2019, 164: 174-183.
文章导航

/