论文

面向任务时间窗的舰船直升机群波次出动回收任务规划

  • 韩啸华 ,
  • 韩维 ,
  • 陆士猛 ,
  • 李娜 ,
  • 郭放 ,
  • 万兵 ,
  • 苏析超
展开
  • 1.海军航空大学,烟台 264001
    2.中国船舶集团有限公司系统工程研究院,北京 100094
.E-mail: suxich@126.com

收稿日期: 2025-01-06

  修回日期: 2025-03-27

  录用日期: 2025-04-29

  网络出版日期: 2025-05-08

Mission planning for ship-helicopter group wave launch and recovery oriented to mission time windows

  • Xiaohua HAN ,
  • Wei HAN ,
  • Shimeng LU ,
  • Na LI ,
  • Fang GUO ,
  • Bing WAN ,
  • Xichao SU
Expand
  • 1.Naval Aviation University,Yantai 264001,China
    2.Systems Engineering Research Institute,China State Shipbuilding Corporation Limited,Beijing 100094,China
E-mail: suxich@126.com

Received date: 2025-01-06

  Revised date: 2025-03-27

  Accepted date: 2025-04-29

  Online published: 2025-05-08

摘要

舰船直升机出动回收能力是支撑两栖舰船多样化任务的核心要素。为提升舰船直升机出动回收执行任务的时效性、灵活性,对甲板资源受限下舰船直升机群多样式出动回收任务规划问题进行了研究。首先,在梳理两栖舰船直升机典型出动回收作业样式、甲板作业流程基础上,提出了一种灵活出动回收作业样式构想,并将波次的出动回收作业细化为包含出动前调运、机务勤务保障、出动离场、任务飞行、回收入场、回收后调运的6阶段闭环流程,综合考虑各阶段作业逻辑、空间、资源约束,以及任务时间窗需求、甲板作业时间的目标,建立了整合多波次直升机机群出动回收任务的非线性整数规划模型。然后,为求解该模型,设计了一种混合精英变异策略的竞争粒子群算法,采用了三段随机数编码方式、基于任务解耦的出动/回收双链串行解码方式,实现了任务序列与资源分配的协同优化。最后,通过对集中、连续、灵活3种样式的案例仿真,验证了模型、算法在优化多波次出动回收任务中的有效性。此外,基于连续作业样式的对比实验,限定舰船保障能力、任务飞行时间,进一步分析了任务编组、波次数量对作业效率的影响,为实际应用提供了更具针对性的参考依据。

本文引用格式

韩啸华 , 韩维 , 陆士猛 , 李娜 , 郭放 , 万兵 , 苏析超 . 面向任务时间窗的舰船直升机群波次出动回收任务规划[J]. 航空学报, 2025 , 46(13) : 531773 -531773 . DOI: 10.7527/S1000-6893.2025.31773

Abstract

The ship-helicopter launch and recovery capability is a core element supporting the diversified missions of amphibious ships. To enhance the timeliness and flexibility of helicopter group operations under deck resource constraints, this study investigates mission planning for multi-pattern helicopter launch and recovery tasks. Firstly, based on analyzing typical helicopter operation patterns and deck workflows for amphibious ships, a flexible operational concept is proposed. The wave-based launch and recovery operations are refined into a six-phase closed-loop process comprising pre-launch transportation, maintenance support, launch departure, mission flight, recovery approach, and post-recovery transportation. By integrating operational logic, spatial-resource constraints, mission time window requirements, and deck operation time optimization objectives, a nonlinear integer programming model for multi-wave helicopter group operations is established. To solve this model, a competitive particle swarm optimization algorithm with hybrid elite mutation strategy is developed, employing three-segment random number encoding and task-decoupled dual-chain serial decoding for coordinated optimization of task sequences and resource allocation. Finally, Simulation experiments on three operation patterns, concentrated, continuous, and flexible, validate the effectiveness of the model and algorithm in optimizing multi-wave launch/recovery missions. Furthermore, comparative experiments under continuous operation pattern with constrained ship support capacity and mission flight duration analyze the impacts of task grouping and wave configuration on operational efficiency, providing targeted references for practical applications.

参考文献

[1] RYAN J C, CUMMINGS M L. A systems analysis of the introduction of unmanned aircraft into aircraft carrier operations[J]. IEEE Transactions on Human-Machine Systems201646(2): 209-220.
[2] 冯强, 曾声奎, 康锐. 基于MAS的舰载机动态调度模型[J]. 航空学报200930(11): 2119-2125.
  FENG Q, ZENG S K, KANG R. A MAS-based model for dynamic scheduling of carrier aircraft[J]. Acta Aeronautica et Astronautica Sinica200930(11): 2119-2125 (in Chinese).
[3] 杨放青, 王超, 姜滨, 等. 舰载机出动回收调度策略生成方法[J]. 北京理工大学学报201838(10): 1030-1036.
  YANG F Q, WANG C, JIANG B, et al. A method of policy automated generation for carrier aircraft sortie and recovery scheduling[J]. Transactions of Beijing Institute of Technology201838(10): 1030-1036 (in Chinese).
[4] 李耀宇, 朱一凡, 杨峰, 等. 基于逆向强化学习的舰载机甲板调度优化方案生成方法[J]. 国防科技大学学报201335(4): 171-175.
  LI Y Y, ZHU Y F, YANG F, et al. Inverse reinforcement learning based optimal schedule generation approach for carrier aircraft on flight deck[J]. Journal of National University of Defense Technology201335(4): 171-175 (in Chinese).
[5] MICHINI B, HOW J. A human-interactive course of action planner for aircraft carrier deck operations[C]∥Infotech@Aerospace 2011. Reston: AIAA, 2011.
[6] 邵莹惠. 航母甲板舰载机出动回收作业任务规划方法研究[D]. 武汉: 华中科技大学, 2019.
  SHAO Y H. Research on mission planning method of carrier aircraft recovery operation on aircraft carrier deck[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
[7] 罗文达. 航母甲板任务规划方法研究[D]. 武汉: 华中科技大学, 2017.
  LUO W D. Research on mission planning method of aircraft carrier deck[D]. Wuhan: Huazhong University of Science and Technology, 2017 (in Chinese).
[8] QI C, WANG D. Dynamic aircraft carrier flight deck task planning based on HTN[J]. IFAC-PapersOnLine201649(12): 1608-1613.
[9] 卞大鹏, 代丽红, 李晶晶, 等. 基于层次任务网络的舰载机任务规划[J]. 中国舰船研究201611(5): 35-41.
  BIAN D P, DAI L H, LI J J, et al. Hierarchical task network-based carrier aircraft task planning[J]. Chinese Journal of Ship Research201611(5): 35-41 (in Chinese).
[10] 张豪, 郑茂, 初秀民, 等. 舰载机高强度作业流程仿真研究[J]. 舰船科学技术201941(11): 147-153.
  ZHANG H, ZHENG M, CHU X M, et al. Carrier-based aircraft surge operation simulation based on linear index policies[J]. Ship Science and Technology201941(11): 147-153 (in Chinese).
[11] 张洪涛, 崔珊珊, 刘广, 等. 机群保障资源配置建模与优化研究[J]. 系统工程理论与实践201535(4): 1019-1026.
  ZHANG H T, CUI S S, LIU G, et al. Resource scheduling for air fleet operations?[J]. Systems Engineering-Theory & Practice201535(4): 1019-1026 (in Chinese).
[12] RYAN J C, BANERJEE A G, CUMMINGS M L, et al. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations[J]. IEEE Transactions on Cybernetics201444(6): 761-773.
[13] DASTIDAR R G, FRAZZOLI E. A queueing network based approach to distributed aircraft carrier deck scheduling?[C]?∥Infotech@Aerospace 2011. Reston: AIAA, 2011: 1514.
[14] WANG X W, DENG Z L, LI H X, al et, Safe dispatch corridor : Towards efficient trajectory planning for carrier aircraft traction system on flight deck[J]. IEEE Transactions on Aerospace and Electronic Systems202561(2): 1997-2010.
[15] WANG X W, LI B, SU X C, et al. Autonomous dispatch trajectory planning on flight deck: A search-resampling-optimization framework[J]. Engineering Applications of Artificial Intelligence2023119: 105792.
[16] 韩维, 刘子玄, 苏析超, 等. 结合启发式与最优控制的舰载机甲板路径规划算法[J]. 系统工程与电子技术202345(4): 1098-1110.
  HAN W, LIU Z X, SU X C, et al. Deck path planning algorithm of carrier-based aircraft based on heuristic and optimal control[J]. Systems Engineering and Electronics202345(4): 1098-1110 (in Chinese).
[17] WANG X W, LIU J, SU X C, et al. A review on carrier aircraft dispatch path planning and control on deck[J]. Chinese Journal of Aeronautics202033(12): 3039-3057.
[18] LIU J, HAN W, WANG X W, et al. Research on cooperative trajectory planning and tracking problem for multiple carrier aircraft on the deck[J]. IEEE Systems Journal202014(2): 3027-3038.
[19] 郭放, 韩维, 刘玉杰, 等. 基于可变作业流程的舰载机机务勤务保障作业调度[J]. 航空学报202546(13): 531195.
  GUO F, HAN W, LIU Y J,et al. Scheduling for maintenance and service support of carrier aircraft based on variable operation process[J]. Acta Aeronautica et Astronautica Sinica202546(13): 531195.
[20] 刘广, 王华, 林友芳, 等. 舰载机保障作业自适应批量匹配决策方法[J]. 航空学报202546(1): 330615.
  LIU G, WANG H, LIN Y F, et al. Adaptive batch task matching decision for shipborne aircraft support operations[J]. Acta Aeronautica et Astronautica Sinica202546(1): 330615 (in Chinese).
[21] 韩维, 崔荣伟, 苏析超, 等. 基于双种群模糊引力搜索算法的舰载机甲板作业调度[J]. 控制与决策202136(11): 2751-2759.
  HAN W, CUI R W, SU X C, et al. Flight deck operations scheduling based on dual population fuzzy gravitational search algorithm[J]. Control and Decision202136(11): 2751-2759 (in Chinese).
[22] CUI R W, HAN W, SU X C, et al. A dual population multi-operator genetic algorithm for flight deck operations scheduling problem[J]. Journal of Systems Engineering and Electronics202132(2): 331-346.
[23] 万兵, 苏析超, 郭放, 等. 不确定性工时下甲板作业的前摄性鲁棒调度[J]. 航空学报202243(12): 325971.
  WAN B, SU X C, GUO F, et al. Proactive robust scheduling of aircraft carrier flight deck operations with uncertain activity durations[J]. Acta Aeronautica et Astronautica Sinica202243(12): 325971 (in Chinese).
[24] 刘哲, 马俊飞, 陈佳峰, 等. 基于改进灰狼算法的舰载机弹药保障调度优化[J]. 系统工程与电子技术202446(4): 1264-1272.
  LIU Z, MA J F, CHEN J F, et al. Carrier-based aircraft ammunition support scheduling optimization based on improved grey wolf optimizer algorithm[J]. Systems Engineering and Electronics202446(4): 1264-1272 (in Chinese).
[25] 张少辉, 刘舜, 李亚飞, 等. 航空母舰舰载机弹药保障作业调度优化算法[J]. 航空学报202344(20): 228485.
  ZHANG S H, LIU S, LI Y F, et al. Optimization algorithm for ammunition support operation scheduling of carrier-borne aircraft[J]. Acta Aeronautica et Astronautica Sinica202344(20): 228485 (in Chinese).
[26] GUO F, HAN W, SU X C, et al. A bi-population immune algorithm for weapon transportation support scheduling problem with pickup and delivery on aircraft carrier deck[J]. Defence Technology202322: 119-134.
[27] 陶俊权, 苏析超, 韩维, 等. 基于EDA算法的航母弹药调度优化研究[J]. 兵器装备工程学报202243(5): 125-131.
  TAO J Q, SU X C, HAN W, et al. Study of aircraft carrier ammunition scheduling optimization based on EDA algorithm[J]. Journal of Ordnance Equipment Engineering202243(5): 125-131 (in Chinese).
[28] DENG Z L, LIU X B, DOU Y Q, et al. Autonomous sortie scheduling for carrier aircraft fleet under towing mode[J]. Defence Technology202543: 1-12.
[29] 刘玉杰, 崔凯凯, 韩维, 等. 基于IPSO的舰载机出动离场规划研究[J]. 系统工程与电子技术202446(4): 1337-1345.
  LIU Y J, CUI K K, HAN W, et al. Research on departure planning of carrier aircraft based on IPSO[J]. Systems Engineering and Electronics202446(4): 1337-1345 (in Chinese).
[30] 刘子玄, 万兵, 苏析超, 等. 基于HA算法的舰载机出动作业调度方法[J]. 系统工程与电子技术202446(5): 1691-1702.
  LIU Z X, WAN B, SU X C, et al. Sortie scheduling method of carrier aircraft based on HA algorithm[J]. Systems Engineering and Electronics202446(5): 1691-1702 (in Chinese).
[31] LIU Z X, HAN W, WU Y, et al. Automated sortie scheduling optimization for fixed-wing unmanned carrier aircraft and unmanned carrier helicopter mixed fleet based on offshore platform?[J]. Drones20226(12): 375.
[32] 万兵, 韩维, 苏析超, 等. 基于CE-PF算法的舰载机离场调度优化问题[J]. 北京航空航天大学学报202248(5): 771-785.
  WAN B, HAN W, SU X C, et al. Carrier-based aircraft departure scheduling optimization based on CE-PF algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics202248(5): 771-785 (in Chinese).
[33] 韩维, 韩啸华, 苏析超, 等. 两栖攻击舰舰载直升机群出动作业一体化调度研究[J]. 北京航空航天大学学报, doi: 10.13700/j.bh.1001-5965.2024.0085 .
  HAN W, HAN X H, SU X C,et al. Research on integrated scheduling of shipboard helicopters sortie operation on amphibious assault ship[J]. Journal of Beijing University of Aeronautics and Astronautics, doi: 10.13700/j.bh.1001-5965.2024.0085 (in Chinese).
[34] HAN W, WANG Y L, SU X C, et al. A multi-objective optimization problem research for amphibious operational mission of shipboard helicopters[J]. Chinese Journal of Aeronautics202336(9): 256-279.
[35] 郝桐, 黄斌, 何巍. 两栖攻击舰直升机出动回收流程分析[J]. 船舶工程202042(5): 11-16, 40.
  HAO T, HUANG B, HE W. Analysis of dispatch recovery process of helicopter on LHD[J]. Ship Engineering202042(5): 11-16, 40 (in Chinese).
[36] Cheng R, JIN Y C, A competitive swarm optimizer for large scale optimization[J]. IEEE Transactions on Cybernetics201545(2): 191-205.
文章导航

/