The ship-helicopter launch and recovery capability is a core element supporting the diversified missions of amphibious ships. To enhance the timeliness and flexibility of helicopter group operations under deck resource constraints, this study investi-gates mission planning for multi-pattern helicopter launch and recovery tasks. Firstly, based on analyzing typical helicopter operation patterns and deck workflows for amphibious ships, a flexible operational concept is proposed. The wave-based launch/recovery operations are refined into a six-phase closed-loop process comprising pre-launch transportation, mainte-nance support, launch departure, mission flight, recovery approach, and post-recovery transportation. By integrating opera-tional logic, spatial-resource constraints, mission time window requirements, and deck operation time optimization objectives, a nonlinear integer programming model for multi-wave helicopter group operations is established. For model solving, a com-petitive particle swarm optimization algorithm with hybrid elite mutation strategy is developed, employing three-segment random number encoding and task-decoupled dual-chain serial decoding for coordinated optimization of task sequences and resource allocation. Simulation cases of concentrated, continuous, and flexible operation patterns validate the effectiveness of the model and algorithm in optimizing multi-wave launch/recovery missions. Furthermore, comparative experiments under continuous operation pattern with constrained ship support capacity and mission flight duration analyze the impacts of task grouping and wave configuration on operational efficiency, providing targeted references for practical applications.
[1]RYAN J C, CUMMINGS M L.A systems analysis of the introduction of unmanned aircraft into aircraft carrier operations[J].IEEE Transactions on Human-Machine Systems, 2016, 46(2):209-220
[2]冯强, 曾声奎, 康锐.基于的舰载机动态调度模型[J].航空学报, 2009, 30(11):2119-2125
[3]杨放青, 王超, 姜滨, 等.舰载机出动回收调度策略生成方法[J].北京理工大学学报自然科学版, 2018, 38(10):1030-1036
[4]李耀宇, 朱一凡, 杨峰, 等.基于逆向强化学习的舰载机甲板调度优化方案生成方法[J].国防科技大学学报, 2013, 35(4):171-175
[5]MICHINI B J, HOW J P.A human-interactive course of action planner for aircraft carrier deck opera-tions[C]. AIAA Infotech@Aerospace Conference and Exhibit 2011.
[6]邵莹惠.航母甲板舰载机出动回收作业任务规划方法研究[D]. 华中科技大学, 2019.
[7]罗文达.航母甲板任务规划方法研究[D]. 华中科技大学, 2017.
[8]Qi C, WANG D.Dynamic aircraft carrier flight deck task planning based on HTN[J].IFAC, 2016, 49(12):1608-1613
[9]卞大鹏, 代丽红, 李晶晶, 等.基于层次任务网络的舰载机任务规划[J].中国舰船研究, 2016, 11(5):35-41
[10]张豪, 郑茂, 初秀民, 等.舰载机高强度作业流程仿真研究[J].舰船科学技术, 2019, 41(11):147-153
[11]张洪涛, 崔珊珊, 刘广, 等.机群保障资源配置建模与优化研究[J].系统工程理论与实践, 2015, 35(04):1019-1026
[12]Ryan J C, Banerjee A G, Cummings M L, et al.Com-paring the performance of expert user heuristics and an integer linear program in aircraft carrier deck op-erations[J].Cybernetics, IEEE Transactions on, 2014, 44(6):761-773
[13]DASTIDAR G R, FRAZZOLI E.A queueing network based approach to distributed aircraft carrier deck scheduling [C]. AIAA Infotech@Aerospace Confer-ence and exhibit 2011.
[14]WANG X W, DENG Z L, LI H X, et al, Safe dispatch corridor: Towards efficient trajectory planning for carrier aircraft traction system on flight deck[J], IEEE Transactions on Aerospace and Electronic Systems, (2024-10-07)[2024-12-25].https://ieeexplore.ieee.org/doi: 10.1109/TAES.2024.3468292
[15]WANG X W, LI B, SU X C, et al.Autonomous dis-patch trajectory planning on flight deck: A search-resampling-optimization framework[J]. Engineering Applications of Artificial Intelligence, 2023, 119: 105792.
[16]韩维, 刘子玄, 苏析超, 等.结合启发式与最优控制的舰载机甲板路径规划算法[J].系统工程与电子技术, 2023, 45(04):1098-1110
[17]WANG X W, LIU J, SU X C, et al.A review on carri-er aircraft dispatch path planning and control on deck[J].Chinese Journal of Aeronautics, 2020, 33(12):3039-3057
[18]LIU J, HAN W, WANG X W, et al.Research on co-operative trajectory planning and tracking problem for multiple carrier aircraft on the deck[J].IEEE Sys-tems Journal, 2020, 14(2):3027-3038
[19]郭放, 韩维, 刘玉杰, 等.基于可变作业流程的舰载机机务勤务保障作业调度[J/OL]. 航空学报, (2024-10-29)[2024-12-24]. https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2024.31195.
[20]刘广, 王华, 林友芳, 等.舰载机保障作业自适应批量匹配决策方法[J/OL]. 航空学报, (2024-07-12)[2024-12-24]. https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2024.30615.
[21]韩维, 崔荣伟, 苏析超, 等.基于双种群模糊引力搜索算法的舰载机甲板作业调度[J].控制与决策, 2021, 36(11):2751-2759
[22]CUI R W, HAN W, SU X C, et al.A dual population multi-operator genetic algorithm for flight deck oper-ations scheduling problem[J].Journal of Systems En-gineering and Electronics, 2021, 32(2):331-346
[23]万兵, 苏析超, 郭放, 等.不确定性工时下甲板作业的前摄性鲁棒调度[J].航空学报, 2022, 43(12):325971-
[24]刘哲, 马俊飞, 陈佳峰, 等.基于改进灰狼算法的舰载机弹药保障调度优化[J].系统工程与电子技术, 2024, 46(04):1264-1272
[25]张少辉, 刘舜, 李亚飞, 等.航空母舰舰载机弹药保障作业调度优化算法[J].航空学报, 2023, 44(20):228485-228485
[26]GUO F, HAN W, SU X C, et al.A bi-population im-mune algorithm for weapon transportation support scheduling problem with pickup and delivery on air-craft carrier deck[J].Defence Technology, 2023, 22(04):119-134
[27]陶俊权, 苏析超, 韩维, 等.基于算法的航母弹药调度优化研究[J].兵器装备工程学报, 2022, 43(05):125-131
[28]DENG Z L, LIU X B, DOU Y Q, et al.Autonomous sortie scheduling for carrier aircraft fleet under tow-ing mode[J]. Defence Technology, (2024-07-24)[2024-12-24]. https://doi.org/10.1016/j.dt.2024.07.011
[29]刘玉杰, 崔凯凯, 韩维, 等.基于的舰载机出动离场规划研究[J].系统工程与电子技术, 2024, 46(04):1337-1345
[30]刘子玄, 万兵, 苏析超, 等.基于算法的舰载机出动作业调度方法[J].系统工程与电子技术, 2024, 46(05):1691-1702
[31]LIU Z X, HAN W, WU Y, et al.Automated sortie scheduling optimization for fixed-wing unmanned carrier aircraft and unmanned carrier helicopter mixed fleet based on offshore platform[J].Drones, 2022, 6(12):375-
[32]万兵, 韩维, 苏析超, 等.基于-算法的舰载机离场调度优化问题[J].北京航空航天大学学报, 2022, 48(05):771-785
[33]韩维, 韩啸华, 苏析超, 等.两栖攻击舰舰载直升机群出动作业一体化调度研究[J/OL]. 北京航空航天大学学报, (2024-05-30)[2024-12-25]. https://bhxb.buaa.edu.cn/bhzk/cn/article/doi/10.13700/j.bh.1001-5965.2024.0085.
[34]HAN W, WANG Y L, SU X C, et al.A multi-objective optimization problem research for amphib-ious operational mission of shipboard helicopters[J].Chinese Journal of Aeronautics, 2023, 36(9):256-279
[35]郝桐, 黄斌, 何巍.两栖攻击舰直升机出动回收流程分析[J].船舶工程, 2020, 42(05):11-16
[36]Cheng R, JIN Y C, A competitive swarm optimizer for large scale optimization[J], IEEE Transactions on Cybernetics, 2015, 45(2): 191-205.[J].IEEE Transactions on Cybernetics, 2015, 45(2):191-205