The problem of ice crystal icing seriously affects the flight safety of aircraft, and the impact behavior of partially melted ice particles is the key to the study of engine icing. A high speed impact test rig for partially melted ice particles was designed and constructed, and a heat transfer based ice particle melting rate measurement method was used and calibrated. Partially melted ice particle impact experiments were conducted at different diameters, impact velocities, and melting rates, and the effect of liquid water on critical fragmentation was discussed in terms of the ice particle fragmentation model. Further, a relative water film thickness coefficient θ is defined to scale the effect of the presence of liquid water on the impact fragmentation of partially melted ice crystals, and an experimental correlation equation for the critical fragmentation velocity of partially melted ice crystals is obtained based on the experimental data. This study improved the understanding of the impact crushing mechanism of partially melted ice particles, and provided a certain theoretical basis for the impact model and the adhesion model of partially melted ice crystals.
[1]BRAVIN M, STRAPP J W, MASON J.An Investiga-tion into Location and Convective Lifecycle Trends in an Ice Crystal Icing Engine Event Database[C]//SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures, 2015: 2130.
[2]MASON J, STRAPP W, CHOW P.The Ice Particle Threat to Engines in Flight[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: Ameri-can Institute of Aeronautics and Astronautics, 2006: 206.
[3]ADDY, JR.H E, VERES J P. An Overview of NASA Engine Ice-Crystal Icing Research[C]//SAE 2011 In-ternational Conference on Aircraft and Engine Icing and Ground Deicing, 2011: 38-001720.
[4]DEZITTER F, GRANDIN A, BRENGUIER J L, et al.HAIC - High Altitude Ice Crystals[C]//5th AIAA At-mospheric and Space Environments Conference. San Diego, CA: American Institute of Aeronautics and Astronautics, 2013: 2674.
[5]CURRIE T, STRUK P, TSAO J C, et al.Fundamental study of mixed-phase icing with application to ice crystal accretion in aircraft jet engines[C]//4th AIAA atmospheric and space environments conference, 2012: 3035.
[6]STRUK P M, BROEREN A P, TSAO J C, et al.Fundamental ice crystal accretion physics studies[C]//International Conference on Aircraft and Engine Icing and Ground Deicing, 2012: 01-1129.
[7]BAUMERT A, BANSMER S, SATTLER S, et al.Simulating natural ice crystal cloud conditions for icing wind tunnel experiments - A review on the design, commissioning and calibration of the TU Braunschweig ice crystal generation system[C]//8th AIAA Atmospheric and Space Environments Conference. Washington, D.C.: American Institute of Aeronautics and Astronautics, 2016: 4053.
[8]MACLEOD J, FULEKI D.Ice Crystal Accretion Test Rig Development for a Compressor Transition Duct[C]//AIAA Atmospheric and Space Environments Conference. Toronto, Ontario, Canada: American Institute of Aeronautics and Astronautics, 2010: 7529.
[9]FLEGEL A B, OLIVER M J.Preliminary Results from a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility[C]//8th AIAA Atmospheric and Space Environments Conference. Washington, D.C.: American Institute of Aeronautics and Astronautics, 2016: 3894.
[10]BAUERECKER S, ULBIG P, BUCH V, et al.Monitoring Ice Nucleation in Pure and Salty Water via High-Speed Imaging and Computer Simulations[J].The Journal of Physical Chemistry C, 2008, 112(20):7631-7636
[11]HAUK T, ROISMAN I V, TROPEA C D.Investigation of the Melting Behaviour of Ice Particles in an Acoustic Levitator[C]//11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Atlanta, GA: American Institute of Aeronautics and Astronautics, 2014: 2261.
[12]KINTEA D M, HAUK T, ROISMAN I V, et al.Shape evolution of a melting nonspherical particle[J].Physical Review E, 2015, 92(3):033012-033012
[13]TANAKA M, KATUAKI M, KIMURA S, 等.Time-Resolved Temperature Distribution of Icing Process of Supercooled Water in Microscopic Scale[C]//6th AIAA Atmospheric and Space Environments Conference. Atlanta, GA: American Institute of Aeronautics and Astronautics, 2014:2329.
[14]YAN S, PALACIOS J.Experimental Measurement of the Percentage of Partial Melting in A Single Ice Crystal[C]//8th AIAA Atmospheric and Space Environments Conference. Washington, D.C.: American Institute of Aeronautics and Astronautics, 2016: 3741.
[15]魏震, 刘秀芳, 钟富豪, 等.微小冰晶粒子融化特性可视化实验研究[J].航空学报, 2023, :1-9
[16]WEI ZHEN, LIU XIU FNAG, ZHONG FUHAO, et al.Visual experimental investigation on the Melting Characteristics of Minuscule Ice Crystal Particles[J]. Acta Aeronautica et Astronautica Sinica, 2023: 1:9.
[17]HAUK T, BONACCURSO E, ROISMAN I V, et al.Ice crystal impact onto a dry solid wallParticle fragmentation[J].Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2181):20150399-
[18]REITTER L M, SCHREMB M, LOHMANN H, 等.Experimental Investigation of Ice Particle Impacts onto a Rigid Substrate[C]//AIAA AVIATION 2021 FORUM. VIRTUAL EVENT: American Institute of Aeronautics and Astronautics, 2021: 2670.
[19]YANG Z, JIN Z, YANG Z.Experimental investigation of an ice particle impinging on a flat plate[J]. Cold Regions Science and Technology, 2024, 218: 104083.
[20]PALACIOS J, YAN S, TAN C, et al.Experimental Measurement of Frozen and Partially Melted Water Droplet Impact Dynamics[C]//6th AIAA Atmospheric and Space Environments Conference. Atlanta, GA: American Institute of Aeronautics and Astronautics, 2014: 3047.
[21]ALVAREZ M, KREEGER R E, PALACIOS J.Experimental evaluation of the impact behavior of partially melted ice particles[J]. International Journal of Impact Engineering, 2019, 123: 70-76.
[22]YARIN A L, PFAFFENLEHNER M, TROPEA C.On the acoustic levitation of droplets[J]. Journal of Fluid Mechanics, 1998, 356: 65-91.
[23]WILDEMAN S, STERL S, SUN C, et al.Fast Dynamics of Water Droplets Freezing from the Outside In[JOL][J].Physical Review Letters, 2017, 118(8):084101-
[24]黄平, 卜雪琴, 林贵平, 等.冰晶粒子运动过程中的相变特性[J].航空动力学报, 2022, 37(7):1379-1391
[25]HUANG PING, BU XUE QIN, LIU GUI PING, et al.Phase transition characteristies of ice crystal particles in motion[J].Journal of Aerospace Power, 2022, 37(7):1379-1391
[26]SCHLUNDER E U.Heat exchanger design handbook[M]. Hemisphere Publishing, New York, NY, 1983.
[27]PRESLES B, DEBAYLE J, PINOLI J ‐C.Size and shape estimation of 3‐D convex objects from their 2‐D projections: application to crystallization processes[J].Journal of Microscopy, 2012, 248(2):140-155
[28]The use of flat-ended projectiles for determining dynamic yield stress I.Theoretical considerations[J].Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 194(1038):289-299
[29]GHADIRI M, ZHANG Z.Impact attrition of particulate solidsPart 1: A theoretical model of chipping[J].Chemical Engineering Science, 2002, 57(17):3659-3669
[30]HEARST M A, DUMAIS S T, OSUNA E, et, al.Support vector machines[J].IEEE Intelligent Systems and their applications, 1998, 13(4):18-28
[31]GENTILE C, WARMUTH M K.Linear hinge loss and average margin[J]. Advances in neural information processing systems, 1998, 11.