部分融化冰晶撞击表面临界破碎速度实验
收稿日期: 2024-11-21
修回日期: 2024-12-16
录用日期: 2025-02-20
网络出版日期: 2025-04-25
基金资助
国家自然科学基金(52272428);国家科技重大专项(J2019-Ⅲ-0010-0054)
Experiment on critical fragmentation velocity of partially melted ice particles impacting a rigid surface
Received date: 2024-11-21
Revised date: 2024-12-16
Accepted date: 2025-02-20
Online published: 2025-04-25
Supported by
National Natural Science Foundation of China(52272428);National Science and Technology Major Project of China (J2019-Ⅲ-0010-0054)
冰晶结冰问题严重影响飞机飞行安全,部分融化冰晶撞击特性是航空发动机结冰研究的关键。设计并搭建了部分融化冰晶高速撞击实验台,使用并校核了一种基于传热学的冰晶融化率测量方法。以部分融化冰晶为实验对象,开展了不同直径、撞击速度、融化率水平下的撞击实验,从冰晶的破碎模型出发,讨论了液态水对冰晶临界破碎问题的影响。进一步定义了相对水膜厚度系数θ来衡量液态水的存在对于部分融化冰晶撞击破碎的影响,基于实验数据得到了部分融化冰晶临界破碎速度的实验关联式。该研究有助于深入理解部分融化冰晶的撞击破碎机制,为部分融化冰晶的撞击破碎、黏附模型提供了一定的理论依据。
刘宗辉 , 卜雪琴 , 包佳仪 , 林贵平 . 部分融化冰晶撞击表面临界破碎速度实验[J]. 航空学报, 2025 , 46(14) : 131558 -131558 . DOI: 10.7527/S1000-6893.2025.31558
The problem of ice crystal icing seriously affects the flight safety of aircraft, and the impact behavior of partially melted ice particles is the key to the study of engine icing. A high-speed impact test rig for partially melted ice particles was designed and constructed, and a heat transfer based ice crystal melting rate measurement method was used and calibrated. Partially melted ice particle impact experiments were conducted at different diameters, impact velocities, and melting rates, and the effect of liquid water on critical fragmentation was discussed in terms of the ice particle fragmentation model. Further, a relative water film thickness coefficient θ is defined to scale the effect of the presence of liquid water on the impact fragmentation of partially melted ice crystals, and an experimental correlation equation for the critical fragmentation velocity of partially melted ice crystals is obtained based on the experimental data. This study improved the understanding of the impact crushing mechanism of partially melted ice particles, and provided a certain theoretical basis for the impact model and the adhesion model of partially melted ice crystals.
| [1] | BRAVIN M, STRAPP J W, MASON J. An investigation into location and convective lifecycle trends in an ice crystal icing engine event database[C]∥SAE Technical Paper Series. Warrendale: SAE International, 2015: 2130. |
| [2] | MASON J, STRAPP W, CHOW P. The ice particle threat to engines in flight[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 206. |
| [3] | ADDY H E Jr, VERES J P. An overview of NASA engine ice-crystal icing research[C]∥SAE Technical Paper Series. Warrendale: SAE International, 2011: 38-001720. |
| [4] | DEZITTER F, GRANDIN A, BRENGUIER J L, et al. HAIC-high altitude ice crystals[C]∥5th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2013. |
| [5] | CURRIE T, STRUK P, TSAO J C, et al. Fundamental study of mixed-phase icing with application to ice crystal accretion in aircraft jet engines[C]∥4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012. |
| [6] | STRUK P, CURRIE T, WRIGHT W B, et al. Fundamental ice crystal accretion physics studies[C]∥SAE Technical Paper Series. Warrendale: SAE International, 2011: 01-1129. |
| [7] | BAUMERT A, BANSMER S, SATTLER S, et al. Simulating natural ice crystal cloud conditions for icing wind tunnel experiments-A review on the design, commissioning and calibration of the TU Braunschweig ice crystal generation system[C]∥8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016. |
| [8] | MACLEOD J, FULEKI D. Ice crystal accretion test rig development for a compressor transition duct[C]∥ AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010. |
| [9] | FLEGEL A B, OLIVER M J. Preliminary results from a heavily instrumented engine ice crystal icing test in a ground based altitude test facility[C]∥8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016. |
| [10] | BAUERECKER S, ULBIG P, BUCH V, et al. Monitoring ice nucleation in pure and salty water via high-speed imaging and computer simulations[J]. The Journal of Physical Chemistry C, 2008, 112(20): 7631-7636. |
| [11] | HAUK T, ROISMAN I V, TROPEA C D. Investigation of the melting behaviour of ice particles in an acoustic levitator[C]∥11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston: AIAA, 2014. |
| [12] | KINTEA D M, HAUK T, ROISMAN I V, et al. Shape evolution of a melting nonspherical particle[J]. Physical Review E, 2015, 92(3): 033012. |
| [13] | TANAKA M, KATUAKI M, KIMURA S, et al. Time-resolved temperature distribution of icing process of supercooled water in microscopic scale[C]∥6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2014. |
| [14] | YAN S H, PALACIOS J. Experimental measurement of the percentage of partial melting in A single ice crystal[C]∥8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016. |
| [15] | 魏震, 刘秀芳, 钟富豪, 等. 微小冰晶粒子融化特性可视化实验[J]. 航空学报, 2023, 44(S2): 729301. |
| WEI Z, LIU X F, ZHONG F H, et al. Visualization experiment of melting characteristics of tiny ice crystal particles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729301 (in Chinese). | |
| [16] | HAUK T, BONACCURSO E, ROISMAN I V, et al. Ice crystal impact onto a dry solid wall. Particle fragmentation[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2181): 20150399. |
| [17] | REITTER L M, SCHREMB M, LOHMANN H, et al. Experimental investigation of ice particle impacts onto a rigid substrate[C]∥AIAA Aviation 2021 Forum. Reston: AIAA, 2021. |
| [18] | YANG Z, JIN Z Y, YANG Z G. Experimental investigation of an ice particle impinging on a flat plate[J]. Cold Regions Science and Technology, 2024, 218: 104083. |
| [19] | LIU Z H, BU X Q, LIN G P, et al. Experimental assessment of rigid surface collision effects on suspended ice particles[J]. Cold Regions Science and Technology, 2025, 231: 104394. |
| [20] | PALACIOS J, YAN S H, TAN C, et al. Experimental measurement of frozen and partially melted water droplet impact dynamics[C]∥6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2014. |
| [21] | ALVAREZ M, KREEGER R E, PALACIOS J. Experimental evaluation of the impact behavior of partially melted ice particles[J]. International Journal of Impact Engineering, 2019, 123: 70-76. |
| [22] | YARIN A L, PFAFFENLEHNER M, TROPEA C. On the acoustic levitation of droplets[J]. Journal of Fluid Mechanics, 1998, 356(1): 65-91. |
| [23] | WILDEMAN S, STERL S, SUN C, et al. Fast dynamics of water droplets freezing from the outside In[J]. Physical Review Letters, 2017, 118(8): 084101. |
| [24] | MASON B J. On the melting of hailstones[J]. Quarterly Journal of the Royal Meteorological Society, 1956, 82(352): 209-216. |
| [25] | 黄平, 卜雪琴, 林贵平, 等. 冰晶粒子运动过程中的相变特性[J]. 航空动力学报, 2022, 37(7): 1379-1391. |
| HUANG P, BU X Q, LIN G P, et al. Phase transition characteristics of ice crystal particles in motion[J]. Journal of Aerospace Power, 2022, 37(7): 1379-1391 (in Chinese). | |
| [26] | SCHLUNDER E U. Heat exchanger design handbook[M]. New York: Hemisphere Publishing, 1983. |
| [27] | PRESLES B, DEBAYLE J, PINOLI J C. Size and shape estimation of 3-D convex objects from their 2-D projections: application to crystallization processes[J]. Journal of Microscopy, 2012, 248(2): 140-155. |
| [28] | TAYLOR G. The use of flat-ended projectiles for determining dynamic yield stress. I. theoretical considerations[J]. Proceedings of the Royal Society of London Series A, 1948, 194(1038): 289-299. |
| [29] | GHADIRI M, ZHANG Z. Impact attrition of particulate solids. Part 1: A theoretical model of chipping[J]. Chemical Engineering Science, 2002, 57(17): 3659-3669. |
| [30] | HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4): 18-28. |
| [31] | GENTILE C, WARMUTH M K. Linear hinge loss and average margin[C]∥Proceedings of the 12th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 1998: 225-231. |
/
| 〈 |
|
〉 |