再入滑翔机动突防轨迹规划与制导方法研究综述

  • 闫循良 ,
  • 王培臣 ,
  • 郭杨
展开
  • 1. 西北工业大学
    2. 西北工业大学航天学院
    3. 火箭军工程大学导弹工程学院

收稿日期: 2025-01-15

  修回日期: 2025-04-01

  网络出版日期: 2025-04-07

基金资助

智控实验室开放基金

Review of research on trajectory planning and guidance methods for entry glide maneuvering penetration

  • YAN Xun-Liang ,
  • WANG Pei-Chen ,
  • GUO Yang
Expand

Received date: 2025-01-15

  Revised date: 2025-04-01

  Online published: 2025-04-07

摘要

随着新型防空反导技术的不断发展,再入滑翔飞行器面临多层次、多平台、多批次的防御体系威胁,其生存和任务完成能力显著下降。在此背景下,再入滑翔飞行器的机动突防轨迹规划与制导成为当前研究的热点问题之一。本文首先分析了再入滑翔突防的性能优势与难点问题;其次,梳理了再入滑翔飞行过程中面临的典型禁飞区建模方法,并从禁飞区被动规避、强防御区主动绕飞、近距博弈对抗及多飞行器协同机动突防四类典型突防样式切入,对相应的机动突防轨迹规划与制导方法的研究现状进行了多角度、多层次总结归纳,同时分析了现有研究成果的特点和局限性;在此基础上,梳理给出了该类技术发展面临的挑战与难点。最后,结合当前研究进展、面临挑战及未来需求,分析了再入滑翔飞行器机动突防轨迹规划与制导技术的发展趋势,初步提出了该研究领域未来的五个发展方向,以期为相关技术的发展和研究提供新的思路和技术参考。

本文引用格式

闫循良 , 王培臣 , 郭杨 . 再入滑翔机动突防轨迹规划与制导方法研究综述[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31810

Abstract

With the continuous development of new air defense and anti-missile technologies, the entry vehicles face the threats from multi-level, multi-platform, and multi-batch defense systems, and their survival and mission-completion capability have significantly declined. Against this backdrop, the maneuvering penetration trajectory planning and guidance of entry vehicles have become one of the major research topics at present. This paper firstly analyzes the performance advantages and difficult problems of entry penetration. Secondly, it sorts out the typical no-fly zone modeling methods faced during the entry flight process. Starting from four typical penetration patterns, namely passive evasion of no-fly zones, active detouring of defense zones, game confrontation, and coordinated maneuvering penetration of multiple vehicles, it summarizes and generalizes the research status of the corresponding maneuvering penetration trajectory planning and guidance methods from multiple perspectives and at multiple levels. At the same time, it analyzes the characteristics and limitations of the existing research results. Based on this, it sorts out and presents the challenges and difficulties faced by the development of this type of technology. Finally, combined with the current research progress, challenges faced, and future requirements, this paper analyzes the development trends of the maneuvering penetration trajectory planning and guidance technology for entry vehicles, and proposes five future development directions in this research field, hoping to provide new ideas and technical references for the development and research of related technologies.

参考文献

[1] 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J]. 航空学报, 2020, 41(1): 45-57.
ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 45-57. (in Chinese)
[2] 熊瑛,夏薇,王林. 2023年国外导弹防御发展综述[J].战术导弹技术,2024,(01):1-6+19.
XIONG Y, XIA W, WANG L. Overview of foreign mis-sile defense development in 2023[J]. Tactical Missile Technology, 2024, (01):1-6+19. (in Chinese)
[3] 骆帅, 查旭, 陆红. 高速打击武器突防技术综述[J].战术导弹技术, 2023(5): 1-9.
LUO S, ZHA X, LU H. Overview on penetration tech-nology of high-speed strike weapon[J]. Tactical Missile Technology, 2023(5): 1-9. (in Chinese)
[4] 刘双喜, 刘世俊, 李勇, 等. 国外高超声速飞行器及防御体系发展现状[J]. 空天防御, 2023, 6(3): 39-51.
LIU S X, LIU S, LI Y, et al. Current developments in foreign hypersonic vehicles and defense systems[J]. Air and Space defense, 2023, 6(3): 39-51. (in Chinese)
[5] 王铮,邢晓露,闫天,等.高超声速飞行器突防制导的发展现状与未来发展方向[J]. 飞航导弹, 2021(7) :18-24.
WANG Z, XING X L, YAN T, et al. The current sta-tus and future development direction of hypersonic aircraft penetration guidance[J]. Aerodynamic Missile Journal, 2021(7) :18-24. (in Chinese)
[6] 汪民乐.弹道导弹突防对策综述[J].飞航导弹,2012,(10):45-51.
WANG M L. Overview of ballistic missile penetration countermeasures [J]. Aerodynamic Missile Jour-nal,2012, (10):45-51. (in Chinese)
[7] 武天才,王宏伦,任斌,等.考虑规避与突防的高超声速飞行器智能容错制导控制一体化设计[J].航空学报,2024,45(15):281-301.
WU T C, WANG H L, REN B, et al. Learning-based integrated fault-tolerant guidance and control for hy-personic vehicles considering avoidance and penetra-tion[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 329607. (in Chinese)
[8] Xia WJ, Wang PC, Yan XL, et al. Rapid and Near-Analytical Planning Method for Entry Trajectory un-der Time and Full-State Constraints[J]. Aerospace, 2024, 11(7):580.
[9] LIANG Z X, Long J T, Zhu S Y, et al. Entry guidance with terminal approach angle constraint[J]. Aerospace Science and Technology, 2020, 102: 105876.
[10] Xie Y, Liu LH, Tang GJ, et al, Weaving maneuvering trajectory design for hypersonic glide vehicles[J]. Chi-nese Journal of Aeronautics, 2011, 32 (12) :2174–2181.
[11] 陈迎春, 齐欢. 基于协同进化的平面追逃对策研究[J]. 控制与决策, 2009, 24(3): 383-387.
CHEN Y C, QI H.Co-evolutionary pursuit-evasion game on a plane[J]. Control and Decision,2009,24(3): 383-387.
[12] 刘思源,梁子璇,任章,等.高超声速滑翔飞行器再入段制导方法综述[J].中国空间科学技术,2016,36(6): 1-13.
LIU S Y, LIANG Z X, REN Z, et al. Review of reentry guidance methods for hypersonic gliding vehicles[J]. Chinese Space Science and Technology,2016, 36(6): 1-13. (in Chinese)
[13] 潘亮,谢愈, 彭双春, 等. 高超声速飞行器滑翔制导方法综述[J]. 国防科技大学学报, 2017, 39(3): 15-22.
PAN L, XIE Y, PENG S C, et al. A survey of gliding guidance methods for hypersonic vehicles[J]. Journal of national university of defense technology, 2017, 39(3): 15-22. (in Chinese)
[14] 郭杰,郑金库,王浩凝.高超声速滑翔飞行器再入制导方法及热点问题研究综述[J].空天技术,2022(1):54-63.
GUO J, ZHENG J K, WANG H N, et al. Review of re-search on reentry guidance methods and hot issues of hypersonic gliding vehicle[J]. Aerospace Technology, 2022(1): 54-63. (in Chinese)
[15] DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehi-cle[J]. Chinese Journal of Aeronautics, 2022, 35(7):1-18.
[16] 陈万春,陈中原,龚晓鹏.智能机动突防策略研究进展[J].飞行力学, 2024, 42(05):1-9.
CHEN W C, CHEN Z Y, GONG X P. Advances in the study of intelligent maneuver penetration strategy [J]. Flight Dynamics ,2024,42(05):1-9. (in Chinese)
[17] 江锐, 张欣,王晓芳.基于最优控制的高速飞行器突防技术研究[J].飞行力学,2024,42(01):32-38.
JIANG R, ZHANG X, WANG XF. Research on pene-tration technology of high-speed aircraft based on op-timal control[J].Flight Dynamics,2024,42(1):32-38. (in Chinese)
[18] 安凯,郭振云,黄伟,等.低/高速飞行器系统编队协同控制方法研究进展[J].航空兵器,2022,29(05):53-65.
An K, Guo Z Y, HUANG W, et al. Research progress of formation-cooperative control methods for low-speed and high-speed vehicle systems[J]. Aero Wea-ponry, 2022, 29(5):53-65. (in Chinese)
[19] 向锦武,董希旺,丁文锐,等. 复杂环境下无人集群系统自主协同关键技术[J].航空学报, 2022, 43(10): 527570.
XIANG J W, DONG X W, DING W R, et al. Key technologies for autonomous cooperation of un-manned swarm systems [J]. Acta Aeronautica et As-tronautica Sinica, 2022, 43(10): 527570. (in Chinese)
[20] 陈洁卿, 孙瑞胜, 陈伟. 超声速导弹群协同博弈突防制导研究[J]. 无人系统技术, 2021, 4(6):65-74.
CHEN J Q, SUN R S, CHEN W. Research on coopera-tive penetration game guidance of supersonic missile [J]. Unmanned Systems Technology,2021,4(6):65-74. (in Chinese)
[21] 王宁宇, 白瑜亮, 魏金鹏, 等. 多弹最优协同诱导突防制导律[J]. 宇航学报, 2022, 43(4):434-444.
WANG N Y, BAI Y L, WEI J P, et al. Guidance Law for Multi-Missile Optimal Cooperative Lured Penetra-tion[J]. Journal of Astronautics, 2022, 43(4):434-444. (in Chinese)
[22] ZHANG RH, CUI NG. Entry trajectory optimization with general polygonal no-fly zone constraints[J]. IEEE transactions on aerospace and electronic systems, 2023, 59(6): 9205-9218.
[23] 张梦樱,唐乾刚,韩小军,等.复杂约束条件下的再入轨迹迭代求解方法[J].兵工学报,2015,36(6):1015-1023.
ZHANG M Y, TANG Q G, HAN X J, et al. Iterative method to solving re-entry trajectory optimization with complex constraints[J]. Acta Armamentarii, 2015, 36(6): 1015-1023. (in Chinese)
[24] 季荣涛. 基于威胁分析的战场空间划分及其在航迹规划中的应用[D].南京大学,2016.
JI R T. The Partition of battlefield base on threat anal-ysis and its application in route planning[D]. Nanjing University, 2016. (in Chinese)
[25] ZHANG R H, XIE Z H, WEI C Z. An enlarged poly-gon method without binary variables for obstacle avoidance trajectory optimization [J]. Chinese Journal of Aeronautics, 2023, 36(8): 284-297.
[26] TIAN M Y, SHEN Z J. Air-breathing hypersonic vehi-cle trajectory optimization with uncertain no-fly zones[J]. Advances in Mechanical Engineer-ing, 2022, 14(7): 1-18.
[27] 郭行, 符文星, 付斌, 等. 复杂动态环境下无人飞行器动态避障近似最优轨迹规划[J]. 宇航学报, 2019, 40(2): 182-190.
GUO H, FU W X, FU B, et al. Near Optimal dynamic obstacle avoidance trajectory programming for un-manned aerial vehicles[J]. Journal of Astronautics, 2019, 40(2): 182-190. (in Chinese)
[28] COTTIL G C, HARMON F G. Hybrid gauss pseudo-spectral and generalized polynomial chaos algorithm to solve stochastic trajectory optimization problems[C] // AIAA Guidance, Navigation, and Control Conference. Portland: AIAA, 2013.
[29] 陆遥, 李东生.基于威胁概率图的无人机作战场景模型设计[J].电子信息对抗技术,2018,33(05):60-66+79.
LU Y, CHEN D S. Design of UAV combat scenario model based on threat probability graph[J]. Electronic Information Warfare Technology,2018,33(05):60-66+79. (in Chinese)
[30] 蔡超, 葛超, 武振波, 等. 基于动态RCS的无人飞行器隐身突防航迹规划[J]. 华中科技大学学报(自然科学版), 2022, 50(11): 72-78.
CAI C, GE C, WU Z B, et al. Stealth penetration path planning of unmanned aerial vehicle based on dynam-ic RCS[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2022, 50(11): 72-78. (in Chinese)
[31] XIE Y, LIU L H, TANG G J, et al. Highly constrained entry trajectory generation[J]. Acta Astronautica, 2013, 88:44-60.
[32] GUO J, WU X Z, TANG S J. Autonomous gliding entry guidance with geographic constraints[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1343-1354.
[33] LIANG Z X, LIU SY, LI QD, et al. Lateral entry guid-ance with no-fly zone constraint[J]. Aerospace Science and Technology,2017,60:39-47.
[34] Gao BL, Yao YD, Chen H, et al. An Online Trajectory Planning Method for Hypersonic Aircraft Considering Maneuverability[C]// 2024 4th International Confer-ence on Computer, Control and Robotics (ICCCR), Shanghai, China, 323-327, 2024.
[35] Sun Z, Sun L, Qi J, et al. Distributed Path Planning for UAVs Based on A* Algorithm of Dubins path[C]// 2023 42nd Chinese Control Conference, 5939-5944, 2023.
[36] HE R Z, LIU L H, TANG G J, et al. Rapid generation of entry trajectory with multiple no-fly zone con-straints[J]. Advances in Space Research, 2017, 60(7): 1430-1442.
[37] HE R Z, LIU L H, TANG G J, et al. Entry trajectory generation without reversal of bank angle[J]. Aero-space Science and Technology, 2017, 71: 627-635.
[38] 张源, 张冉, 李惠峰. 复杂禁飞区高超声速飞行器路径轨迹双层规划[J]. 宇航学报, 2022, 43(5): 615-627.
ZHANG Y, ZHANG R, LI H F. Dual-level Path-trajectory Generation with Complex No-fly Zone Con-straints for Hypersonic Vehicle[J]. Journal of Astro-nautics, 2022, 43(5): 615-627. (in Chinese)
[39] Zhang Y, Zhang R, Li HF. Online path decision of no-fly zones avoidance for hypersonic vehicles based on a graph attention network[J]. IEEE transactions on aero-space and electronic systems, 2023, 59(5): 5554-5567.
[40] 赵吉松,尚腾,张金明,等.带有控制变量变化率约束伪谱轨迹优化方法[J].宇航学报,2022,43(10):1368-1377.
ZHAO J S, SHANG T, ZHANG J M, et al. Pseudo-spectral Trajectory Optimization Method with Con-straint on the Change Rate of Control Variables[J]. Journal of Astronautics, 2022, 43(10): 1368-1377. (in Chinese)
[41] 梅映雪, 冯玥, 王容顺, 等. 高超声速飞行器多约束再入轨迹快速优化[J]. 宇航学报, 2019, 40(7): 758-767.
MEI Y X, FENG Y, WANG R S, et al. Fast optimiza-tion of reentry trajectory for hypersonic vehicles with multiple constraints[J]. Journal of Astronautics, 2019, 40(7): 758-767. (in Chinese)
[42] Sun X, Zhang BH, Chai RQ, et al. UAV trajectory optimization using chance-constrained second-order cone programming[J]. Aerospace Science and Tech-nology, 2022, 121 (1): 1–10.
[43] HUANG A, YU JL, LIU YM, et al. Multitask-constrained reentry trajectory planning for hypersonic gliding vehicle[J]. Aerospace Science and Technology, 2024, 155:109636.
[44] ZHANG Y, ZHANG R, LI H F. Graph-based path deci-sion modeling for hypersonic vehicles with no-fly zone constraints[J]. Aerospace Science and Technology, 2021, 116: 106857.
[45] ZHANG D, LIU L, WANG Y J. On-line reentry guid-ance algorithm with both path and no-fly zone con-straints[J]. Acta Astronautica, 2015, 117: 243-253.
[46] Li ZH, Yang XJ, Sun XD, et al. Improved artificial potential field based lateral entry guidance for way-points passage and no-fly zones avoidance[J]. Aero-space Science and Technology, 2019, 86:119–31.
[47] TONG XD, SONG J, LI WL, et al. Penetration game strategy of high dynamic vehicles with constraints of no-fly zones and interceptors[J]. Engineering Applica-tions of Artificial Intelligence, 2024, 136:109018.
[48] HU Y D, GAO C S, LI J L, et al. A novel adap-tive lateral reentry guidance algorithm with complex distributed no-fly zones constraints[J]. Chinese Jour-nal of Aeronautics, 2022, 35(7): 128-143.
[49] Liang ZX, Ren Z. Tentacle-based guidance for entry flight with no-fly zone constraint[J]. Journal of Guid-ance, Control, and Dynamics, 2017, 41(4):1–10.
[50] Gao Y, Cai GB, Yang XG, et al. Improved tentacle-based guidance for reentry gliding hypersonic vehicle with no-fly zone constraint[J]. IEEE Access 2019,7: 119246–58.
[51] 高杨, 蔡光斌, 徐慧, 等. 虚拟多触角探测的高超声速滑翔飞行器再入机动制导[J]. 航空学报, 2020, 41(11): 623703.
GAO Y, CAI G B, XU H, et al. Reentry maneuver guidance of hypersonic glide vehicle under virtual multi-tentacle detection[J]. Acta Aeronautica et Astro-nautica Sinica, 2020, 41(11): 623703. (in Chinese)
[52] Hu J, Yang X, Wang W, et al. Obstacle avoidance for UAS in continuous action space using deep reinforce-ment learning[J]. IEEE Access, 2022, 10: 90623–90634.
[53] Hong D and Park S. Avoiding obstacles via missile real-time inference by reinforcement learning[J]. Ap-plied sciences, 2022, 12(9): 4142.
[54] Wu TC, Wang, H., Liu, Y., Li, T., Yu, Y. Learning-based interfered fluid avoidance guidance for hyper-sonic reentry vehicles with multiple constraints[J]. ISA Trans, 2023, 139: 291–307.
[55] Wu, J., Wang, H., Liu, Y., Zhang, M., Wu, T. Learn-ing-based fixed-wing UAV reactive maneuver control for obstacle avoidance[J]. Aerospace Science and Technology, 2022, 126: 107623.
[56] 惠俊鹏,汪韧,郭继峰. 基于强化学习的禁飞区绕飞智能制导技术[J]. 航空学报, 2023, 44(11):327416.
HUI J P, WANG R, GUO J F. Intelligent guidance for no-fly zone avoidance based on reinforcement learn-ing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 327416. (in Chinese)
[57] Li X, Wang XG, Zhou HY. Entry guidance for spatial no-fly zones avoidance via model-based reinforcement learning[J]. Aerospace Science and Technology, 2024, 153:109405.
[58] GAO Y, Zhou R, Chen JY. Integrated entry guidance with no-fly zone constraint using reinforcement learn-ing and predictor-corrector technique[J]. Proc IMechE Part G: J Aerospace Engineering, 2024, 238(7): 728-741.
[59] Yao P, Wang HL, Su ZK. Real-time path planning of unmanned aerial vehicle for target tracking and ob-stacle avoidance in complex dynamic environment[J]. Aerospace Science and Technology, 2015, 47:269-279.
[60] 万兵,梁勇,邓力, 等. 基于滚动时域优化的反舰导弹航路规划[J]. 兵器装备工程学报, 2023, 44(9): 49-57.
WAN B, LIANG Y, DENG L, et al. A path planning method for an anti-ship missile based on receding horizon optimal procedure[J]. Journal of Ordnance Equipment Engineering, 2023, 44(9): 49-57. (in Chi-nese)
[61] 刘畅,谢文俊,张鹏,等.多重威胁下的无人机自主避障航迹规划[J].哈尔滨工业大学学报,2020, 52(4):119-126.
LIU C, XIE W J, ZHANG P, et al. UAV autonomous obstacle avoidance path planning under multiple threats[J]. JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY, 2020, 52(4): 119-126. (in Chinese)
[62] 高昂,董志明,叶红兵, 等. 基于深度强化学习的巡飞弹突防控制决策[J]. 兵工学报, 2021, 42(5): 1101-1110.
GAO A, DONG Z M, YE H B, et al. Loitering Muni-tion Penetration Control Decision Based on Deep Re-inforcement Learning[J]. Acta Armamentarii, 2021, 42(5): 1101-1110. (in Chinese)
[63] Jiang, Q, Wang, XG, Li, Y. Intelligent Reentry Guid-ance with Dynamic No-Fly Zones Based on Deep Re-inforcement Learning[C]// Computational and Exper-imental Simulations in Engineering, ICCES, Mecha-nisms and Machine Science, 2023, 143: 291-313.
[64] 王浩凝,郭杰,张宝超,等.多禁飞区在线遭遇的自主规避再入制导方法[J]. 宇航学报, 2024, 45(9): 1429-1444.
WANG H N, GUO J, ZHANG B C. Autonomous Entry Guidance Method for Online Encounters with Multi-ple No-fly Zones[J]. Journal of Astronautics, 2024, 45(9): 1429-1444. (in Chinese)
[65] Wang HN, Guo J, Zhang BC, et al. Learning-Based Guidance Method of Avoiding Multiple Online-Detected No-Fly Zones for Hypersonic Cruise Vehi-cles[J]. Journal of Aerospace Engineering, 2025, 38(1):04024107.
[66] 杨浩东,王剑颖,吴志刚.面向动态禁飞区的自适应触角探测机动制导方法[J].宇航学报,2024,45(2):192-202.
YANG H D, WANG J Y, WU Z G, et al. Adaptive Ten-tacle Detection and Maneuvering Guidance Method for Dynamic No-fly Zones[J]. Journal of Astronautics, 2024, 45(2): 192-202. (in Chinese)
[67] Lars B, Masahiro O, Brian CW. Chance-constrained optimal path planning with obstacles[J]. IEEE Trans-actions on Robotics, 2011, 27(6):1080-1094.
[68] M. Bujarbaruah, U. Rosolia, Y. R. Stürz, et al. A Sim-ple Robust MPC for Linear Systems with Parametric and Additive Uncertainty[C]// American Control Con-ference (ACC), 2021, 2108-2113.
[69] Zhang YQ, Cheng M, Nan B. Stochastic trajectory optimization for 6-DOF spacecraft autonomous ren-dezvous and docking with nonlinear chance con-straints[J]. Acta Astronautica, 2023, 208: 62-73.
[70] M. Ono, B.C. Williams, Iterative risk allocation: A new approach to robust model predictive control with a joint chance constraint[C]. 47th IEEE Conference on Decision and Control, IEEE, 2008, 3427–3432.
[71] Ding YF, Thomas M. Distributionally Robust Joint Chance-Constrained Optimization for Networked Mi-crogrids Considering Contingencies and Renewable Uncertainty[J]. IEEE Transactions on Smart grid, 2022, 13(3): 2467-2478.
[72] Joshua P, Panagiotis T. Covariance steering with opti-mal risk allocation[J]. IEEE Transactions on Aerospace and Electronic systems, 2021, 57(6): 3719-3733.
[73] 田牧垠, 沈作军.一类不确定环境下的再入滑翔飞行器轨迹规划[J].北京航空航天大学学报,2024,50(8): 2514-2523.
TIAN M Y, SHEN Z J. Trajectory planning of re-entry gliding vehicle in a class of uncertain environment[J]. Journal of Beijing University of Aeronautics and As-tronautics, 2024, 50(8):2514-2523 (in Chinese)
[74] 闫循良,王培臣,夏文杰,等. 基于混沌多项式的再入滑翔鲁棒轨迹凸优化[J].西北工业大学学报, 2023, 41(5):850-859.
YAN X L, WANG P C, XIA W J, et al. Robust convex optimization for reentry glide trajectory using poly-nomial chaos[J]. Journal of Northwestern Polytech-nical University, 2023, 41(5):850-859. (in Chinese)
[75] 王培臣,闫循良,王宽,等.基于随机响应面与混沌多项式的鲁棒轨迹优化[J].系统工程与电子技术,2023,45(10):3226-3239.
WANG P C, YAN X L, WANG K, et al. Robust trajec-tory optimization method based on stochastic response surface and polynomial chaos. Systems Engineering and Electronics ,2023,45(10):3226-3239. (in Chinese)
[76] 龚宇莲, 孟斌, 李毛毛.基于单参数迭代的TAEM在线轨迹生成方法[J].航空学报,2020,41(S2) :129-138.
GONG Y L, MENG B, LI M. Online trajectory design method for terminal area energy management based on single parameter iteration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2) :129-138. (in Chi-nese)
[77] WANG X, GUO J, TANG S J, et al. Entry trajectory planning with terminal full states constraints and mul-tiple geographic constraints[J]. Aerospace Science and Technology, 2019, 84: 620-631.
[78] Shi P, Xu J, Cheng L, et al, Real-Time lateral predic-tor-corrector entry guidance with terminal heading angle constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, doi: 10.1109/TAES.2024.3466125.
[79] LIANG Z X, YU J L, REN Z, et al. Trajectory plan-ning for cooperative flight of two hypersonic entry ve-hicles[C] // International Space Planes and Hypersonic Systems and Technologies Conferences, Xiamen, Chi-na, 2017.
[80] 王肖, 郭杰, 唐胜景,等. 基于解析剖面的时间协同再入制导[J]. 航空学报, 2018, 40(3): 322565.
WANG X, GUO J, TANG S J, et al. Time-cooperative entry guidance based on analytical profile[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 322565. (in Chinese)
[81] LI Z H, BING H, MING H W, et al. Time-coordination entry guidance for multi-hypersonic vehicles[J]. Aero-space Science and Technology, 2019, 89: 123-135.
[82] 刘旭, 李响, 王晓鹏. 高超声速滑翔飞行器解析协同再入制导[J]. 宇航学报, 2023, 44(5): 731-742.
LIU X, Li X, WANG X P. Analytical cooperative reentry guidance for hypersonic glide vehicles[J]. Journal of Astronautics, 2023, 44(5): 731-742. (in Chi-nese)
[83] YU W, CHEN W, JIANG Z, et al. Analytical entry guidance for coordinated flight with multiple no-fly-zone constraints[J]. Aerospace Science and Technology, 2019,84, 273-290.
[84] 王培臣, 闫循良, 李新国, 等. 考虑时间约束的解析再入滑翔制导[J]. 航空学报, 2024, 45(23): 329844.
WANG PC, YAN X L, LI X G, et al. Analytical entry glide guidance considering time constraints[J]. Acta Aeronautica et Astronautica Sinica,2024, 45(23): 329844. (in Chinese)
[85] 方科, 张庆振, 倪昆,等. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5): 197-212.
FANG K, ZHANG Q Z, NI K, et al. Time-coordination reentry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 197-212. (in Chinese)
[86] 张晚晴, 余文斌, 李静琳, 等. 基于纵程解析解的飞行器智能横程机动再入协同制导[J]. 兵工学报, 2021, 42(7): 1400-1411.
ZHANG W Q, YU W B, LI J , et al. Cooperative reentry guidance for intelligent lateral maneuver of hypersonic vehicle based on downrange analytical so-lution[J]. Acta Armamentarii, 2021, 42(7): 1400-1411. (in Chinese)
[87] 方科, 张庆振, 倪昆等.飞行时间约束下的再入制导律[J]. 哈尔滨工业大学学报, 2019, 51(10): 90-97.
FANG K, ZHANG Q Z, NI K, CUI L F. Reentry guid-ance law with flight time constraint[J]. Journal of Harbin institute of technology, 2019, 51(10): 90-97. (in Chinese)
[88] LIU Z, LU H R, ZHENG W, et al. Rapid time-coordination trajectory planning method for muti-glide vechicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 317-331.
[89] YU J L, DONG X W, LI Q D, et al. Cooperative guid-ance strategy for multiple hypersonic gliding vehicles system[J]. Chinese Journal of Aeronautics, 2020, 33(3): 1-16.
[90] YU W B, YAO Y Z, CHEN W C. Analytical coopera-tive entry guidance for rendezvous and formation flight[J]. Acta Astronautica, 2020, 171: 118-138.
[91] B. Jarmark, A.W. Merz, J. Breakwell, The variable speed tail-chase aerial combat problem[J]. Journal of Guidance Control and Dynamics, 1981,4 (3): 323–328.
[92] Fabio A. Almeida D, Improving maneuver perfor-mance in unmanned aerial vehicles through learning-based reference management[J]. Journal of AIAA, 2013, 4616.
[93] Ren LJ, Guo WL, Xian Y. Deep reinforcement learn-ing based integrated evasion and impact hierarchical intelligent policy of exo-atmospheric vehicles[J]. Chi-nese Journal of Aeronautics, 2025, 38, 103193.
[94] 何磊,闫晓东,唐硕 .螺旋俯冲机动突防的制导律设计[J].航空学报,2019,40(05):193-207.
HE L, YAN X D, TANG S. Guidance law design for spiral diving maneuver penetration[J]. Acta Aeronauti-ca et Astronautica Sinica, 2019, 40(05):193-207. (in Chinese)
[95] 段安娜,闫循良.多约束螺旋机动变结构制导律设计[J].固体火箭技术,2020,43(03):400-406.
DUAN A N, YAN X L. Design of multi-constrained spiral maneuvering variable structure guidance law[J]. Journal of Solid Rocket Technology, 2020,43(3):400-406. (in Chinese)
[96] ZHU J W, LIU L H, TANG G J. Optimal diving ma-neuver strategy considering guidance accuracy for hy-personic vehicle[J]. Acta Astronautica, 2014, 4(1) :231–242.
[97] ZHU J W, HE R, TANG G J. Pendulum maneuvering strategy for hypersonic glide vehicles[J]. Aerospace Science and Technology, 2018, 78: 62–70.
[98] 周啟航, 刘延芳, 齐乃明, 等. 基于反预警的反拦截中段规避突防策略[J].航空学报, 2017, 38(1):182-194.
ZHOU Q H, LIU Y F, QI N M, et al. Anti-warning based anti-interception avoiding penetration strategy in midcourse[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 182-194. (in Chinese)
[99] HE L, YAN X, TANG S. Spiral-diving trajectory opti-mization for hypersonic vehicles by second-order cone programming[J]. Aerospace Science and Technology, 2019, 95: 105427.
[100] YAN B B, LIU R F, DAI P, et al, A rapid penetration trajectory optimization method for hypersonic vehi-cles[J]. International Journal of Aerospace and Engi-neering, 2019, 2019: 1–11.
[101] Shen ZP, Yu JL, Dong X W, et al. Penetration trajec-tory optimization for the hypersonic gliding vehicle encountering two interceptors[J]. Aerospace Science and Technology, 2022, 121:107363.
[102] Shinar J, Steinberg D. Analysis of optimal evasive Maneuvers based on a linearized two-dimensional kin-ematic model [J]. Journal of Aircraft, 1977, 14(8): 795-802.
[103] Joseph Z. Linear Quadratic Pursuit-Evasion Games with Terminal Velocity Constraints [J]. Journal of Guidance, Control and Dynamics, 1995, 19(02): 499-501.
[104] Shaw Y, Pierson B. Optimal Planar Evasive Aircraft Maneuvers Against Proportional Navigation Missiles [J]. Journal of Guidance, Control and Dynamics, 1996, 19(06): 1210-1215.
[105] Kang S, Kim H J, Tahk M. Aerial Pursuit-Evasion Game using Nonlinear Model Predictive Guidance [C]// AIAA Guidance, Navigation, and Control Con-ference, t 2010, Toronto, Ontario Canada.
[106] Joseph B, Eugene M, Henry J. Optimal Evasion with a Path-Angle Constraint and Against Two Pursuers [J]. Journal of Guidance, 1988, 11(04): 300-304.
[107] Sun A, Liu H. Multi-Pursuer Evasion [C]//AIAA Guidance, Navigation and Control Conference, 2008, Honolulu, Hawaii, 18-21.
[108] Zhang P, Fang Y, Zhang F, et al. An Adaptive Weighted Differential Game Guidance Law [J]. Chi-nese Journal of Aeronautics, 2012, 25(5): 739-746.
[109] Bardhan R, Ghose D. An SDRE Based Differential Game Approach for Maneuvering Target Interception [C]// AIAA Guidance, Navigation, and Control Con-ference, 2015, Kissimmee, Florida, 5-9.
[110] Shaferman V, Shima T. A Cooperative Differential Game for Imposing a Relative Intercept Angle [C]// AIAA Guidance, Navigation, and Control Conference, 2017, Grapevine, Texas, 9-13.
[111] Perelman A, Shima T, Rusnak I. Cooperative Differ-ential Games Strategies for Active Aircraft Protection from a Homing Missile [J]. Journal of Guidance, Con-trol and Dynamics, 2011, 34(03): 761-773.
[112] Rubinsky S, Gutman S. Three–Player Pursuit and Evasion Conflict [J]. Journal of Guidance, Control and Dynamics, 2014, 37(01): 98-110.
[113] Weiss M, Shima T, Castaneda D, et al. Combined and cooperative minimum-effort guidance algorithms in an active aircraft defense scenario [J]. Journal of Guid-ance, Control and Dynamics, 2017, 40(5): 1241-1254.
[114] 王雨琪,宁国栋,王晓峰,等.基于微分对策的临近空间飞行器机动突防策略[J].航空学,2020, 41(S2):724276.
WANG Y Q, NING G D, WANG X F, et al. Maneuver penetration strategy of near space vehicle based on dif-ferential game[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2):724276. (in Chinese)
[115] Yan T, Cai YL, Xu B. Evasion guidance algorithms for air-breathing hypersonic vehicles in three-player pursuit-evasion games[J]. Chinese Journal of Aero-nautics, 2020, 33(12): 3423-3426.
[116] Shen, Z.P, Yu, JL, Dong XW, Ren Z. Deep Neural Network-based Penetration Trajectory Generation for Hypersonic Gliding Vehicles Encountering Two Inter-ceptors[C]// In Proceedings of the 41st Chinese Con-trol Conference , 2022, Hefei, China, 3392–3397.
[117] 左家亮,杨任农,张滢,等.基于启发式强化学习的空战机动智能决策[J].航空学报,2017,38(10):217-230.
ZUO J L, YANG R N, ZHANG Y, et al. Intelligent de-cision making in air combat maneuvering based on heuristic reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):217-230. (in Chi-nese)
[118] 崔雅萌, 王会霞, 郑春胜, 等. 高速飞行器追逃博弈决策技术[J]. 指挥与控制学报, 2021,7(4): 403-414.
CUN Y M, WANG H X, ZHENG C S, et al. Pursuit-Evasion Game Decision Technology of High Speed Vehicles[J]. JOURNAL OF COMMAND AND CONTROL, 2021,7(4): 403-414. (in Chinese)
[119] Jiang L, Nan Y, Zhang Y, et al. Anti-Interception Guidance for Hypersonic Glide Vehicle: A Deep Rein-forcement Learning Approach[J]. Aerospace, 2022, 9: 424.
[120] 张鸿林,罗建军,马卫华.基于机器学习的航天器规避目标威胁博弈决策[J].航空学报,2024,45(08):249-264.
ZHANG H L, LUO J J, MA W H. Spacecraft game de-cision making for threat avoidance of space targets based on machine learning[J]. Acta Aeronautica et As-tronautica Sinica, 2024, 45(8): 329136 (in Chinese).
[121] Hu X, Wang T S, Gong M, et al. Guidance Design for Escape Flight Vehicle Using Evolution Strategy En-hanced Deep Reinforcement Learning[J]. IEEE Access, 2024, 12:48210-48222.
[122] Hu X, Wang H B, Gong M, et al. Guidance Design for Escape Flight Vehicle against Multiple Pursuit Flight Vehicles Using the RNN-Based Proximal Policy Optimization Algorithm[J]. Aerospace, 2024, 11: 361.
[123] Guo Y H, Jiang Z J, Huang H Q, et al. Intelligent maneuver strategy for a hypersonic pursuit-evasion game based on deep reinforcement learning[J]. Aero-space, 2023, 10: 783.
[124] Li X, Wang XG, Zhou HY, et al. A novel evasion guidance for hypersonic morphing vehicle via intelli-gent maneuver strategy[J]. Chinese Journal of Aero-nautics, 2024, 37(5): 441-461.
[125] Jeon I S, Lee J I, Tahk M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transac-tions on Control Systems Technology, 2006, 14(2): 260-266.
[126] 崔乃刚,韦常柱,郭继峰. 导弹协同作战飞行时间裕度[J]. 航空学报, 2010, 31(7):1351-1359.
CUN N G, WEI C Z, GUO J F. Flight Time Margin of Missile Cooperative Engagement[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1351-1359. (in Chinese)
[127] 乔浩, 白风科, 毛瑞. 高超声速滑翔导弹协同再入影响因素分析[J]. 飞行力学, 2020, 38(6): 63-69.
QIAO H, BAI F K, MAO R. Analysis of influence factors for cooperative reentry of hypersonic glide missile[J]. Flight Dynamics, 2020,38(6): 63-69. (in Chinese)
[128] LIANG Z X, LV C, ZHU S. Lateral entry guidance with terminal time constraint[J]. IEEE Transactions on Aerospace and Electronic System, 2023, 59(3): 2544-2553.
[129] PARK B G, KWON H H, KIM Y H, et al. Composite guidance scheme for impact angle control against a non-maneuvering moving target[J]. Journal of Guid-ance, Control, and Dynamics,2016,39(5) : 1129-1137.
[130] LEE S, KIM Y. Capturability of impact-angle control composite guidance law considering field-of-view lim-it[J]. IEEE Transactions on Aerospace and Electronic Systems,2019,56( 2) : 1077-1093.
[131] 赵启伦,陈建,李清东.高超武器与常规导弹协同攻击策略可行域研究[J].航空学报,2015,36(7):2291-2300.
ZHAO Q L, CHEN J, LI Q D. Feasible region of hy-personic and ballistic missiles cooperative attack strategy[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2291-2300. (in Chinese)
[132] Zhang MH, Wang HL, Li ZY, et al. Fluid-based mod-erate collision avoidance for UAV formation in 3-D low-altitude environments[J]. Chinese Journal of Aer-onautics, 2024. https://doi.org/10.1016/j.cja.2024.08.053.
[133] 徐星光,于江龙,郭鸿飞.有翼飞行器编队协同突防构型和通信拓扑优化方法[J/OL].北京航空航天大学学报.https://doi.org/10.13700/j.bh.1001-5965.2023.0818.
XU X G,YU J L,GUO H F, et al.Optimization method of winged aircraft configuration and topology for cooperative penetration [J/OL].Journal of Beijing University of Aeronautics and Astronautics https://doi.org/10.13700/j.bh.1001-5965.2023.0818.
[134] Shui X, Wang X, Lin P, et al. A formation control method of multiple hypersonic missiles[J]. Tactical Missile Technology, 2020, 5 :139-148.
[135] Lu H, Qiu W, Sun H, et al. Design method of rapid forming for high-speed aircraft formation [J]. Aero-space Control, 2021, 39(2): 33-38.
[136] Zhang Z, Luo Y, Qu Y. Distributed formation control with obstacle and collision avoidance for hypersonic gliding vehicles subject to multiple constraints[J]. In-ternational Journal of Aerospace Engineering,2023,1: 9973653.
[137] Zhang Y, Wang X, Tang S. A globally fixed-time solu-tion of distributed formation control for multiple hy-personic gliding vehicles [J]. Aerospace Science and Technology, 2020, 98: 105643.
[138] Hu Y, He F, Bai C, et al. Cooperative obstacle avoid-ance decision method for the terminal guidance phase of hypersonic vehicles [J]. ACTA ARMAMENTARII, 2024, 45(9): 3147-3160.
文章导航

/