[1] 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J]. 航空学报, 2020, 41(1): 45-57.
ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 45-57. (in Chinese)
[2] 熊瑛,夏薇,王林. 2023年国外导弹防御发展综述[J].战术导弹技术,2024,(01):1-6+19.
XIONG Y, XIA W, WANG L. Overview of foreign mis-sile defense development in 2023[J]. Tactical Missile Technology, 2024, (01):1-6+19. (in Chinese)
[3] 骆帅, 查旭, 陆红. 高速打击武器突防技术综述[J].战术导弹技术, 2023(5): 1-9.
LUO S, ZHA X, LU H. Overview on penetration tech-nology of high-speed strike weapon[J]. Tactical Missile Technology, 2023(5): 1-9. (in Chinese)
[4] 刘双喜, 刘世俊, 李勇, 等. 国外高超声速飞行器及防御体系发展现状[J]. 空天防御, 2023, 6(3): 39-51.
LIU S X, LIU S, LI Y, et al. Current developments in foreign hypersonic vehicles and defense systems[J]. Air and Space defense, 2023, 6(3): 39-51. (in Chinese)
[5] 王铮,邢晓露,闫天,等.高超声速飞行器突防制导的发展现状与未来发展方向[J]. 飞航导弹, 2021(7) :18-24.
WANG Z, XING X L, YAN T, et al. The current sta-tus and future development direction of hypersonic aircraft penetration guidance[J]. Aerodynamic Missile Journal, 2021(7) :18-24. (in Chinese)
[6] 汪民乐.弹道导弹突防对策综述[J].飞航导弹,2012,(10):45-51.
WANG M L. Overview of ballistic missile penetration countermeasures [J]. Aerodynamic Missile Jour-nal,2012, (10):45-51. (in Chinese)
[7] 武天才,王宏伦,任斌,等.考虑规避与突防的高超声速飞行器智能容错制导控制一体化设计[J].航空学报,2024,45(15):281-301.
WU T C, WANG H L, REN B, et al. Learning-based integrated fault-tolerant guidance and control for hy-personic vehicles considering avoidance and penetra-tion[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 329607. (in Chinese)
[8] Xia WJ, Wang PC, Yan XL, et al. Rapid and Near-Analytical Planning Method for Entry Trajectory un-der Time and Full-State Constraints[J]. Aerospace, 2024, 11(7):580.
[9] LIANG Z X, Long J T, Zhu S Y, et al. Entry guidance with terminal approach angle constraint[J]. Aerospace Science and Technology, 2020, 102: 105876.
[10] Xie Y, Liu LH, Tang GJ, et al, Weaving maneuvering trajectory design for hypersonic glide vehicles[J]. Chi-nese Journal of Aeronautics, 2011, 32 (12) :2174–2181.
[11] 陈迎春, 齐欢. 基于协同进化的平面追逃对策研究[J]. 控制与决策, 2009, 24(3): 383-387.
CHEN Y C, QI H.Co-evolutionary pursuit-evasion game on a plane[J]. Control and Decision,2009,24(3): 383-387.
[12] 刘思源,梁子璇,任章,等.高超声速滑翔飞行器再入段制导方法综述[J].中国空间科学技术,2016,36(6): 1-13.
LIU S Y, LIANG Z X, REN Z, et al. Review of reentry guidance methods for hypersonic gliding vehicles[J]. Chinese Space Science and Technology,2016, 36(6): 1-13. (in Chinese)
[13] 潘亮,谢愈, 彭双春, 等. 高超声速飞行器滑翔制导方法综述[J]. 国防科技大学学报, 2017, 39(3): 15-22.
PAN L, XIE Y, PENG S C, et al. A survey of gliding guidance methods for hypersonic vehicles[J]. Journal of national university of defense technology, 2017, 39(3): 15-22. (in Chinese)
[14] 郭杰,郑金库,王浩凝.高超声速滑翔飞行器再入制导方法及热点问题研究综述[J].空天技术,2022(1):54-63.
GUO J, ZHENG J K, WANG H N, et al. Review of re-search on reentry guidance methods and hot issues of hypersonic gliding vehicle[J]. Aerospace Technology, 2022(1): 54-63. (in Chinese)
[15] DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehi-cle[J]. Chinese Journal of Aeronautics, 2022, 35(7):1-18.
[16] 陈万春,陈中原,龚晓鹏.智能机动突防策略研究进展[J].飞行力学, 2024, 42(05):1-9.
CHEN W C, CHEN Z Y, GONG X P. Advances in the study of intelligent maneuver penetration strategy [J]. Flight Dynamics ,2024,42(05):1-9. (in Chinese)
[17] 江锐, 张欣,王晓芳.基于最优控制的高速飞行器突防技术研究[J].飞行力学,2024,42(01):32-38.
JIANG R, ZHANG X, WANG XF. Research on pene-tration technology of high-speed aircraft based on op-timal control[J].Flight Dynamics,2024,42(1):32-38. (in Chinese)
[18] 安凯,郭振云,黄伟,等.低/高速飞行器系统编队协同控制方法研究进展[J].航空兵器,2022,29(05):53-65.
An K, Guo Z Y, HUANG W, et al. Research progress of formation-cooperative control methods for low-speed and high-speed vehicle systems[J]. Aero Wea-ponry, 2022, 29(5):53-65. (in Chinese)
[19] 向锦武,董希旺,丁文锐,等. 复杂环境下无人集群系统自主协同关键技术[J].航空学报, 2022, 43(10): 527570.
XIANG J W, DONG X W, DING W R, et al. Key technologies for autonomous cooperation of un-manned swarm systems [J]. Acta Aeronautica et As-tronautica Sinica, 2022, 43(10): 527570. (in Chinese)
[20] 陈洁卿, 孙瑞胜, 陈伟. 超声速导弹群协同博弈突防制导研究[J]. 无人系统技术, 2021, 4(6):65-74.
CHEN J Q, SUN R S, CHEN W. Research on coopera-tive penetration game guidance of supersonic missile [J]. Unmanned Systems Technology,2021,4(6):65-74. (in Chinese)
[21] 王宁宇, 白瑜亮, 魏金鹏, 等. 多弹最优协同诱导突防制导律[J]. 宇航学报, 2022, 43(4):434-444.
WANG N Y, BAI Y L, WEI J P, et al. Guidance Law for Multi-Missile Optimal Cooperative Lured Penetra-tion[J]. Journal of Astronautics, 2022, 43(4):434-444. (in Chinese)
[22] ZHANG RH, CUI NG. Entry trajectory optimization with general polygonal no-fly zone constraints[J]. IEEE transactions on aerospace and electronic systems, 2023, 59(6): 9205-9218.
[23] 张梦樱,唐乾刚,韩小军,等.复杂约束条件下的再入轨迹迭代求解方法[J].兵工学报,2015,36(6):1015-1023.
ZHANG M Y, TANG Q G, HAN X J, et al. Iterative method to solving re-entry trajectory optimization with complex constraints[J]. Acta Armamentarii, 2015, 36(6): 1015-1023. (in Chinese)
[24] 季荣涛. 基于威胁分析的战场空间划分及其在航迹规划中的应用[D].南京大学,2016.
JI R T. The Partition of battlefield base on threat anal-ysis and its application in route planning[D]. Nanjing University, 2016. (in Chinese)
[25] ZHANG R H, XIE Z H, WEI C Z. An enlarged poly-gon method without binary variables for obstacle avoidance trajectory optimization [J]. Chinese Journal of Aeronautics, 2023, 36(8): 284-297.
[26] TIAN M Y, SHEN Z J. Air-breathing hypersonic vehi-cle trajectory optimization with uncertain no-fly zones[J]. Advances in Mechanical Engineer-ing, 2022, 14(7): 1-18.
[27] 郭行, 符文星, 付斌, 等. 复杂动态环境下无人飞行器动态避障近似最优轨迹规划[J]. 宇航学报, 2019, 40(2): 182-190.
GUO H, FU W X, FU B, et al. Near Optimal dynamic obstacle avoidance trajectory programming for un-manned aerial vehicles[J]. Journal of Astronautics, 2019, 40(2): 182-190. (in Chinese)
[28] COTTIL G C, HARMON F G. Hybrid gauss pseudo-spectral and generalized polynomial chaos algorithm to solve stochastic trajectory optimization problems[C] // AIAA Guidance, Navigation, and Control Conference. Portland: AIAA, 2013.
[29] 陆遥, 李东生.基于威胁概率图的无人机作战场景模型设计[J].电子信息对抗技术,2018,33(05):60-66+79.
LU Y, CHEN D S. Design of UAV combat scenario model based on threat probability graph[J]. Electronic Information Warfare Technology,2018,33(05):60-66+79. (in Chinese)
[30] 蔡超, 葛超, 武振波, 等. 基于动态RCS的无人飞行器隐身突防航迹规划[J]. 华中科技大学学报(自然科学版), 2022, 50(11): 72-78.
CAI C, GE C, WU Z B, et al. Stealth penetration path planning of unmanned aerial vehicle based on dynam-ic RCS[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2022, 50(11): 72-78. (in Chinese)
[31] XIE Y, LIU L H, TANG G J, et al. Highly constrained entry trajectory generation[J]. Acta Astronautica, 2013, 88:44-60.
[32] GUO J, WU X Z, TANG S J. Autonomous gliding entry guidance with geographic constraints[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1343-1354.
[33] LIANG Z X, LIU SY, LI QD, et al. Lateral entry guid-ance with no-fly zone constraint[J]. Aerospace Science and Technology,2017,60:39-47.
[34] Gao BL, Yao YD, Chen H, et al. An Online Trajectory Planning Method for Hypersonic Aircraft Considering Maneuverability[C]// 2024 4th International Confer-ence on Computer, Control and Robotics (ICCCR), Shanghai, China, 323-327, 2024.
[35] Sun Z, Sun L, Qi J, et al. Distributed Path Planning for UAVs Based on A* Algorithm of Dubins path[C]// 2023 42nd Chinese Control Conference, 5939-5944, 2023.
[36] HE R Z, LIU L H, TANG G J, et al. Rapid generation of entry trajectory with multiple no-fly zone con-straints[J]. Advances in Space Research, 2017, 60(7): 1430-1442.
[37] HE R Z, LIU L H, TANG G J, et al. Entry trajectory generation without reversal of bank angle[J]. Aero-space Science and Technology, 2017, 71: 627-635.
[38] 张源, 张冉, 李惠峰. 复杂禁飞区高超声速飞行器路径轨迹双层规划[J]. 宇航学报, 2022, 43(5): 615-627.
ZHANG Y, ZHANG R, LI H F. Dual-level Path-trajectory Generation with Complex No-fly Zone Con-straints for Hypersonic Vehicle[J]. Journal of Astro-nautics, 2022, 43(5): 615-627. (in Chinese)
[39] Zhang Y, Zhang R, Li HF. Online path decision of no-fly zones avoidance for hypersonic vehicles based on a graph attention network[J]. IEEE transactions on aero-space and electronic systems, 2023, 59(5): 5554-5567.
[40] 赵吉松,尚腾,张金明,等.带有控制变量变化率约束伪谱轨迹优化方法[J].宇航学报,2022,43(10):1368-1377.
ZHAO J S, SHANG T, ZHANG J M, et al. Pseudo-spectral Trajectory Optimization Method with Con-straint on the Change Rate of Control Variables[J]. Journal of Astronautics, 2022, 43(10): 1368-1377. (in Chinese)
[41] 梅映雪, 冯玥, 王容顺, 等. 高超声速飞行器多约束再入轨迹快速优化[J]. 宇航学报, 2019, 40(7): 758-767.
MEI Y X, FENG Y, WANG R S, et al. Fast optimiza-tion of reentry trajectory for hypersonic vehicles with multiple constraints[J]. Journal of Astronautics, 2019, 40(7): 758-767. (in Chinese)
[42] Sun X, Zhang BH, Chai RQ, et al. UAV trajectory optimization using chance-constrained second-order cone programming[J]. Aerospace Science and Tech-nology, 2022, 121 (1): 1–10.
[43] HUANG A, YU JL, LIU YM, et al. Multitask-constrained reentry trajectory planning for hypersonic gliding vehicle[J]. Aerospace Science and Technology, 2024, 155:109636.
[44] ZHANG Y, ZHANG R, LI H F. Graph-based path deci-sion modeling for hypersonic vehicles with no-fly zone constraints[J]. Aerospace Science and Technology, 2021, 116: 106857.
[45] ZHANG D, LIU L, WANG Y J. On-line reentry guid-ance algorithm with both path and no-fly zone con-straints[J]. Acta Astronautica, 2015, 117: 243-253.
[46] Li ZH, Yang XJ, Sun XD, et al. Improved artificial potential field based lateral entry guidance for way-points passage and no-fly zones avoidance[J]. Aero-space Science and Technology, 2019, 86:119–31.
[47] TONG XD, SONG J, LI WL, et al. Penetration game strategy of high dynamic vehicles with constraints of no-fly zones and interceptors[J]. Engineering Applica-tions of Artificial Intelligence, 2024, 136:109018.
[48] HU Y D, GAO C S, LI J L, et al. A novel adap-tive lateral reentry guidance algorithm with complex distributed no-fly zones constraints[J]. Chinese Jour-nal of Aeronautics, 2022, 35(7): 128-143.
[49] Liang ZX, Ren Z. Tentacle-based guidance for entry flight with no-fly zone constraint[J]. Journal of Guid-ance, Control, and Dynamics, 2017, 41(4):1–10.
[50] Gao Y, Cai GB, Yang XG, et al. Improved tentacle-based guidance for reentry gliding hypersonic vehicle with no-fly zone constraint[J]. IEEE Access 2019,7: 119246–58.
[51] 高杨, 蔡光斌, 徐慧, 等. 虚拟多触角探测的高超声速滑翔飞行器再入机动制导[J]. 航空学报, 2020, 41(11): 623703.
GAO Y, CAI G B, XU H, et al. Reentry maneuver guidance of hypersonic glide vehicle under virtual multi-tentacle detection[J]. Acta Aeronautica et Astro-nautica Sinica, 2020, 41(11): 623703. (in Chinese)
[52] Hu J, Yang X, Wang W, et al. Obstacle avoidance for UAS in continuous action space using deep reinforce-ment learning[J]. IEEE Access, 2022, 10: 90623–90634.
[53] Hong D and Park S. Avoiding obstacles via missile real-time inference by reinforcement learning[J]. Ap-plied sciences, 2022, 12(9): 4142.
[54] Wu TC, Wang, H., Liu, Y., Li, T., Yu, Y. Learning-based interfered fluid avoidance guidance for hyper-sonic reentry vehicles with multiple constraints[J]. ISA Trans, 2023, 139: 291–307.
[55] Wu, J., Wang, H., Liu, Y., Zhang, M., Wu, T. Learn-ing-based fixed-wing UAV reactive maneuver control for obstacle avoidance[J]. Aerospace Science and Technology, 2022, 126: 107623.
[56] 惠俊鹏,汪韧,郭继峰. 基于强化学习的禁飞区绕飞智能制导技术[J]. 航空学报, 2023, 44(11):327416.
HUI J P, WANG R, GUO J F. Intelligent guidance for no-fly zone avoidance based on reinforcement learn-ing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 327416. (in Chinese)
[57] Li X, Wang XG, Zhou HY. Entry guidance for spatial no-fly zones avoidance via model-based reinforcement learning[J]. Aerospace Science and Technology, 2024, 153:109405.
[58] GAO Y, Zhou R, Chen JY. Integrated entry guidance with no-fly zone constraint using reinforcement learn-ing and predictor-corrector technique[J]. Proc IMechE Part G: J Aerospace Engineering, 2024, 238(7): 728-741.
[59] Yao P, Wang HL, Su ZK. Real-time path planning of unmanned aerial vehicle for target tracking and ob-stacle avoidance in complex dynamic environment[J]. Aerospace Science and Technology, 2015, 47:269-279.
[60] 万兵,梁勇,邓力, 等. 基于滚动时域优化的反舰导弹航路规划[J]. 兵器装备工程学报, 2023, 44(9): 49-57.
WAN B, LIANG Y, DENG L, et al. A path planning method for an anti-ship missile based on receding horizon optimal procedure[J]. Journal of Ordnance Equipment Engineering, 2023, 44(9): 49-57. (in Chi-nese)
[61] 刘畅,谢文俊,张鹏,等.多重威胁下的无人机自主避障航迹规划[J].哈尔滨工业大学学报,2020, 52(4):119-126.
LIU C, XIE W J, ZHANG P, et al. UAV autonomous obstacle avoidance path planning under multiple threats[J]. JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY, 2020, 52(4): 119-126. (in Chinese)
[62] 高昂,董志明,叶红兵, 等. 基于深度强化学习的巡飞弹突防控制决策[J]. 兵工学报, 2021, 42(5): 1101-1110.
GAO A, DONG Z M, YE H B, et al. Loitering Muni-tion Penetration Control Decision Based on Deep Re-inforcement Learning[J]. Acta Armamentarii, 2021, 42(5): 1101-1110. (in Chinese)
[63] Jiang, Q, Wang, XG, Li, Y. Intelligent Reentry Guid-ance with Dynamic No-Fly Zones Based on Deep Re-inforcement Learning[C]// Computational and Exper-imental Simulations in Engineering, ICCES, Mecha-nisms and Machine Science, 2023, 143: 291-313.
[64] 王浩凝,郭杰,张宝超,等.多禁飞区在线遭遇的自主规避再入制导方法[J]. 宇航学报, 2024, 45(9): 1429-1444.
WANG H N, GUO J, ZHANG B C. Autonomous Entry Guidance Method for Online Encounters with Multi-ple No-fly Zones[J]. Journal of Astronautics, 2024, 45(9): 1429-1444. (in Chinese)
[65] Wang HN, Guo J, Zhang BC, et al. Learning-Based Guidance Method of Avoiding Multiple Online-Detected No-Fly Zones for Hypersonic Cruise Vehi-cles[J]. Journal of Aerospace Engineering, 2025, 38(1):04024107.
[66] 杨浩东,王剑颖,吴志刚.面向动态禁飞区的自适应触角探测机动制导方法[J].宇航学报,2024,45(2):192-202.
YANG H D, WANG J Y, WU Z G, et al. Adaptive Ten-tacle Detection and Maneuvering Guidance Method for Dynamic No-fly Zones[J]. Journal of Astronautics, 2024, 45(2): 192-202. (in Chinese)
[67] Lars B, Masahiro O, Brian CW. Chance-constrained optimal path planning with obstacles[J]. IEEE Trans-actions on Robotics, 2011, 27(6):1080-1094.
[68] M. Bujarbaruah, U. Rosolia, Y. R. Stürz, et al. A Sim-ple Robust MPC for Linear Systems with Parametric and Additive Uncertainty[C]// American Control Con-ference (ACC), 2021, 2108-2113.
[69] Zhang YQ, Cheng M, Nan B. Stochastic trajectory optimization for 6-DOF spacecraft autonomous ren-dezvous and docking with nonlinear chance con-straints[J]. Acta Astronautica, 2023, 208: 62-73.
[70] M. Ono, B.C. Williams, Iterative risk allocation: A new approach to robust model predictive control with a joint chance constraint[C]. 47th IEEE Conference on Decision and Control, IEEE, 2008, 3427–3432.
[71] Ding YF, Thomas M. Distributionally Robust Joint Chance-Constrained Optimization for Networked Mi-crogrids Considering Contingencies and Renewable Uncertainty[J]. IEEE Transactions on Smart grid, 2022, 13(3): 2467-2478.
[72] Joshua P, Panagiotis T. Covariance steering with opti-mal risk allocation[J]. IEEE Transactions on Aerospace and Electronic systems, 2021, 57(6): 3719-3733.
[73] 田牧垠, 沈作军.一类不确定环境下的再入滑翔飞行器轨迹规划[J].北京航空航天大学学报,2024,50(8): 2514-2523.
TIAN M Y, SHEN Z J. Trajectory planning of re-entry gliding vehicle in a class of uncertain environment[J]. Journal of Beijing University of Aeronautics and As-tronautics, 2024, 50(8):2514-2523 (in Chinese)
[74] 闫循良,王培臣,夏文杰,等. 基于混沌多项式的再入滑翔鲁棒轨迹凸优化[J].西北工业大学学报, 2023, 41(5):850-859.
YAN X L, WANG P C, XIA W J, et al. Robust convex optimization for reentry glide trajectory using poly-nomial chaos[J]. Journal of Northwestern Polytech-nical University, 2023, 41(5):850-859. (in Chinese)
[75] 王培臣,闫循良,王宽,等.基于随机响应面与混沌多项式的鲁棒轨迹优化[J].系统工程与电子技术,2023,45(10):3226-3239.
WANG P C, YAN X L, WANG K, et al. Robust trajec-tory optimization method based on stochastic response surface and polynomial chaos. Systems Engineering and Electronics ,2023,45(10):3226-3239. (in Chinese)
[76] 龚宇莲, 孟斌, 李毛毛.基于单参数迭代的TAEM在线轨迹生成方法[J].航空学报,2020,41(S2) :129-138.
GONG Y L, MENG B, LI M. Online trajectory design method for terminal area energy management based on single parameter iteration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2) :129-138. (in Chi-nese)
[77] WANG X, GUO J, TANG S J, et al. Entry trajectory planning with terminal full states constraints and mul-tiple geographic constraints[J]. Aerospace Science and Technology, 2019, 84: 620-631.
[78] Shi P, Xu J, Cheng L, et al, Real-Time lateral predic-tor-corrector entry guidance with terminal heading angle constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, doi: 10.1109/TAES.2024.3466125.
[79] LIANG Z X, YU J L, REN Z, et al. Trajectory plan-ning for cooperative flight of two hypersonic entry ve-hicles[C] // International Space Planes and Hypersonic Systems and Technologies Conferences, Xiamen, Chi-na, 2017.
[80] 王肖, 郭杰, 唐胜景,等. 基于解析剖面的时间协同再入制导[J]. 航空学报, 2018, 40(3): 322565.
WANG X, GUO J, TANG S J, et al. Time-cooperative entry guidance based on analytical profile[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 322565. (in Chinese)
[81] LI Z H, BING H, MING H W, et al. Time-coordination entry guidance for multi-hypersonic vehicles[J]. Aero-space Science and Technology, 2019, 89: 123-135.
[82] 刘旭, 李响, 王晓鹏. 高超声速滑翔飞行器解析协同再入制导[J]. 宇航学报, 2023, 44(5): 731-742.
LIU X, Li X, WANG X P. Analytical cooperative reentry guidance for hypersonic glide vehicles[J]. Journal of Astronautics, 2023, 44(5): 731-742. (in Chi-nese)
[83] YU W, CHEN W, JIANG Z, et al. Analytical entry guidance for coordinated flight with multiple no-fly-zone constraints[J]. Aerospace Science and Technology, 2019,84, 273-290.
[84] 王培臣, 闫循良, 李新国, 等. 考虑时间约束的解析再入滑翔制导[J]. 航空学报, 2024, 45(23): 329844.
WANG PC, YAN X L, LI X G, et al. Analytical entry glide guidance considering time constraints[J]. Acta Aeronautica et Astronautica Sinica,2024, 45(23): 329844. (in Chinese)
[85] 方科, 张庆振, 倪昆,等. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5): 197-212.
FANG K, ZHANG Q Z, NI K, et al. Time-coordination reentry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 197-212. (in Chinese)
[86] 张晚晴, 余文斌, 李静琳, 等. 基于纵程解析解的飞行器智能横程机动再入协同制导[J]. 兵工学报, 2021, 42(7): 1400-1411.
ZHANG W Q, YU W B, LI J , et al. Cooperative reentry guidance for intelligent lateral maneuver of hypersonic vehicle based on downrange analytical so-lution[J]. Acta Armamentarii, 2021, 42(7): 1400-1411. (in Chinese)
[87] 方科, 张庆振, 倪昆等.飞行时间约束下的再入制导律[J]. 哈尔滨工业大学学报, 2019, 51(10): 90-97.
FANG K, ZHANG Q Z, NI K, CUI L F. Reentry guid-ance law with flight time constraint[J]. Journal of Harbin institute of technology, 2019, 51(10): 90-97. (in Chinese)
[88] LIU Z, LU H R, ZHENG W, et al. Rapid time-coordination trajectory planning method for muti-glide vechicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 317-331.
[89] YU J L, DONG X W, LI Q D, et al. Cooperative guid-ance strategy for multiple hypersonic gliding vehicles system[J]. Chinese Journal of Aeronautics, 2020, 33(3): 1-16.
[90] YU W B, YAO Y Z, CHEN W C. Analytical coopera-tive entry guidance for rendezvous and formation flight[J]. Acta Astronautica, 2020, 171: 118-138.
[91] B. Jarmark, A.W. Merz, J. Breakwell, The variable speed tail-chase aerial combat problem[J]. Journal of Guidance Control and Dynamics, 1981,4 (3): 323–328.
[92] Fabio A. Almeida D, Improving maneuver perfor-mance in unmanned aerial vehicles through learning-based reference management[J]. Journal of AIAA, 2013, 4616.
[93] Ren LJ, Guo WL, Xian Y. Deep reinforcement learn-ing based integrated evasion and impact hierarchical intelligent policy of exo-atmospheric vehicles[J]. Chi-nese Journal of Aeronautics, 2025, 38, 103193.
[94] 何磊,闫晓东,唐硕 .螺旋俯冲机动突防的制导律设计[J].航空学报,2019,40(05):193-207.
HE L, YAN X D, TANG S. Guidance law design for spiral diving maneuver penetration[J]. Acta Aeronauti-ca et Astronautica Sinica, 2019, 40(05):193-207. (in Chinese)
[95] 段安娜,闫循良.多约束螺旋机动变结构制导律设计[J].固体火箭技术,2020,43(03):400-406.
DUAN A N, YAN X L. Design of multi-constrained spiral maneuvering variable structure guidance law[J]. Journal of Solid Rocket Technology, 2020,43(3):400-406. (in Chinese)
[96] ZHU J W, LIU L H, TANG G J. Optimal diving ma-neuver strategy considering guidance accuracy for hy-personic vehicle[J]. Acta Astronautica, 2014, 4(1) :231–242.
[97] ZHU J W, HE R, TANG G J. Pendulum maneuvering strategy for hypersonic glide vehicles[J]. Aerospace Science and Technology, 2018, 78: 62–70.
[98] 周啟航, 刘延芳, 齐乃明, 等. 基于反预警的反拦截中段规避突防策略[J].航空学报, 2017, 38(1):182-194.
ZHOU Q H, LIU Y F, QI N M, et al. Anti-warning based anti-interception avoiding penetration strategy in midcourse[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 182-194. (in Chinese)
[99] HE L, YAN X, TANG S. Spiral-diving trajectory opti-mization for hypersonic vehicles by second-order cone programming[J]. Aerospace Science and Technology, 2019, 95: 105427.
[100] YAN B B, LIU R F, DAI P, et al, A rapid penetration trajectory optimization method for hypersonic vehi-cles[J]. International Journal of Aerospace and Engi-neering, 2019, 2019: 1–11.
[101] Shen ZP, Yu JL, Dong X W, et al. Penetration trajec-tory optimization for the hypersonic gliding vehicle encountering two interceptors[J]. Aerospace Science and Technology, 2022, 121:107363.
[102] Shinar J, Steinberg D. Analysis of optimal evasive Maneuvers based on a linearized two-dimensional kin-ematic model [J]. Journal of Aircraft, 1977, 14(8): 795-802.
[103] Joseph Z. Linear Quadratic Pursuit-Evasion Games with Terminal Velocity Constraints [J]. Journal of Guidance, Control and Dynamics, 1995, 19(02): 499-501.
[104] Shaw Y, Pierson B. Optimal Planar Evasive Aircraft Maneuvers Against Proportional Navigation Missiles [J]. Journal of Guidance, Control and Dynamics, 1996, 19(06): 1210-1215.
[105] Kang S, Kim H J, Tahk M. Aerial Pursuit-Evasion Game using Nonlinear Model Predictive Guidance [C]// AIAA Guidance, Navigation, and Control Con-ference, t 2010, Toronto, Ontario Canada.
[106] Joseph B, Eugene M, Henry J. Optimal Evasion with a Path-Angle Constraint and Against Two Pursuers [J]. Journal of Guidance, 1988, 11(04): 300-304.
[107] Sun A, Liu H. Multi-Pursuer Evasion [C]//AIAA Guidance, Navigation and Control Conference, 2008, Honolulu, Hawaii, 18-21.
[108] Zhang P, Fang Y, Zhang F, et al. An Adaptive Weighted Differential Game Guidance Law [J]. Chi-nese Journal of Aeronautics, 2012, 25(5): 739-746.
[109] Bardhan R, Ghose D. An SDRE Based Differential Game Approach for Maneuvering Target Interception [C]// AIAA Guidance, Navigation, and Control Con-ference, 2015, Kissimmee, Florida, 5-9.
[110] Shaferman V, Shima T. A Cooperative Differential Game for Imposing a Relative Intercept Angle [C]// AIAA Guidance, Navigation, and Control Conference, 2017, Grapevine, Texas, 9-13.
[111] Perelman A, Shima T, Rusnak I. Cooperative Differ-ential Games Strategies for Active Aircraft Protection from a Homing Missile [J]. Journal of Guidance, Con-trol and Dynamics, 2011, 34(03): 761-773.
[112] Rubinsky S, Gutman S. Three–Player Pursuit and Evasion Conflict [J]. Journal of Guidance, Control and Dynamics, 2014, 37(01): 98-110.
[113] Weiss M, Shima T, Castaneda D, et al. Combined and cooperative minimum-effort guidance algorithms in an active aircraft defense scenario [J]. Journal of Guid-ance, Control and Dynamics, 2017, 40(5): 1241-1254.
[114] 王雨琪,宁国栋,王晓峰,等.基于微分对策的临近空间飞行器机动突防策略[J].航空学,2020, 41(S2):724276.
WANG Y Q, NING G D, WANG X F, et al. Maneuver penetration strategy of near space vehicle based on dif-ferential game[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2):724276. (in Chinese)
[115] Yan T, Cai YL, Xu B. Evasion guidance algorithms for air-breathing hypersonic vehicles in three-player pursuit-evasion games[J]. Chinese Journal of Aero-nautics, 2020, 33(12): 3423-3426.
[116] Shen, Z.P, Yu, JL, Dong XW, Ren Z. Deep Neural Network-based Penetration Trajectory Generation for Hypersonic Gliding Vehicles Encountering Two Inter-ceptors[C]// In Proceedings of the 41st Chinese Con-trol Conference , 2022, Hefei, China, 3392–3397.
[117] 左家亮,杨任农,张滢,等.基于启发式强化学习的空战机动智能决策[J].航空学报,2017,38(10):217-230.
ZUO J L, YANG R N, ZHANG Y, et al. Intelligent de-cision making in air combat maneuvering based on heuristic reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):217-230. (in Chi-nese)
[118] 崔雅萌, 王会霞, 郑春胜, 等. 高速飞行器追逃博弈决策技术[J]. 指挥与控制学报, 2021,7(4): 403-414.
CUN Y M, WANG H X, ZHENG C S, et al. Pursuit-Evasion Game Decision Technology of High Speed Vehicles[J]. JOURNAL OF COMMAND AND CONTROL, 2021,7(4): 403-414. (in Chinese)
[119] Jiang L, Nan Y, Zhang Y, et al. Anti-Interception Guidance for Hypersonic Glide Vehicle: A Deep Rein-forcement Learning Approach[J]. Aerospace, 2022, 9: 424.
[120] 张鸿林,罗建军,马卫华.基于机器学习的航天器规避目标威胁博弈决策[J].航空学报,2024,45(08):249-264.
ZHANG H L, LUO J J, MA W H. Spacecraft game de-cision making for threat avoidance of space targets based on machine learning[J]. Acta Aeronautica et As-tronautica Sinica, 2024, 45(8): 329136 (in Chinese).
[121] Hu X, Wang T S, Gong M, et al. Guidance Design for Escape Flight Vehicle Using Evolution Strategy En-hanced Deep Reinforcement Learning[J]. IEEE Access, 2024, 12:48210-48222.
[122] Hu X, Wang H B, Gong M, et al. Guidance Design for Escape Flight Vehicle against Multiple Pursuit Flight Vehicles Using the RNN-Based Proximal Policy Optimization Algorithm[J]. Aerospace, 2024, 11: 361.
[123] Guo Y H, Jiang Z J, Huang H Q, et al. Intelligent maneuver strategy for a hypersonic pursuit-evasion game based on deep reinforcement learning[J]. Aero-space, 2023, 10: 783.
[124] Li X, Wang XG, Zhou HY, et al. A novel evasion guidance for hypersonic morphing vehicle via intelli-gent maneuver strategy[J]. Chinese Journal of Aero-nautics, 2024, 37(5): 441-461.
[125] Jeon I S, Lee J I, Tahk M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transac-tions on Control Systems Technology, 2006, 14(2): 260-266.
[126] 崔乃刚,韦常柱,郭继峰. 导弹协同作战飞行时间裕度[J]. 航空学报, 2010, 31(7):1351-1359.
CUN N G, WEI C Z, GUO J F. Flight Time Margin of Missile Cooperative Engagement[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1351-1359. (in Chinese)
[127] 乔浩, 白风科, 毛瑞. 高超声速滑翔导弹协同再入影响因素分析[J]. 飞行力学, 2020, 38(6): 63-69.
QIAO H, BAI F K, MAO R. Analysis of influence factors for cooperative reentry of hypersonic glide missile[J]. Flight Dynamics, 2020,38(6): 63-69. (in Chinese)
[128] LIANG Z X, LV C, ZHU S. Lateral entry guidance with terminal time constraint[J]. IEEE Transactions on Aerospace and Electronic System, 2023, 59(3): 2544-2553.
[129] PARK B G, KWON H H, KIM Y H, et al. Composite guidance scheme for impact angle control against a non-maneuvering moving target[J]. Journal of Guid-ance, Control, and Dynamics,2016,39(5) : 1129-1137.
[130] LEE S, KIM Y. Capturability of impact-angle control composite guidance law considering field-of-view lim-it[J]. IEEE Transactions on Aerospace and Electronic Systems,2019,56( 2) : 1077-1093.
[131] 赵启伦,陈建,李清东.高超武器与常规导弹协同攻击策略可行域研究[J].航空学报,2015,36(7):2291-2300.
ZHAO Q L, CHEN J, LI Q D. Feasible region of hy-personic and ballistic missiles cooperative attack strategy[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2291-2300. (in Chinese)
[132] Zhang MH, Wang HL, Li ZY, et al. Fluid-based mod-erate collision avoidance for UAV formation in 3-D low-altitude environments[J]. Chinese Journal of Aer-onautics, 2024. https://doi.org/10.1016/j.cja.2024.08.053.
[133] 徐星光,于江龙,郭鸿飞.有翼飞行器编队协同突防构型和通信拓扑优化方法[J/OL].北京航空航天大学学报.https://doi.org/10.13700/j.bh.1001-5965.2023.0818.
XU X G,YU J L,GUO H F, et al.Optimization method of winged aircraft configuration and topology for cooperative penetration [J/OL].Journal of Beijing University of Aeronautics and Astronautics https://doi.org/10.13700/j.bh.1001-5965.2023.0818.
[134] Shui X, Wang X, Lin P, et al. A formation control method of multiple hypersonic missiles[J]. Tactical Missile Technology, 2020, 5 :139-148.
[135] Lu H, Qiu W, Sun H, et al. Design method of rapid forming for high-speed aircraft formation [J]. Aero-space Control, 2021, 39(2): 33-38.
[136] Zhang Z, Luo Y, Qu Y. Distributed formation control with obstacle and collision avoidance for hypersonic gliding vehicles subject to multiple constraints[J]. In-ternational Journal of Aerospace Engineering,2023,1: 9973653.
[137] Zhang Y, Wang X, Tang S. A globally fixed-time solu-tion of distributed formation control for multiple hy-personic gliding vehicles [J]. Aerospace Science and Technology, 2020, 98: 105643.
[138] Hu Y, He F, Bai C, et al. Cooperative obstacle avoid-ance decision method for the terminal guidance phase of hypersonic vehicles [J]. ACTA ARMAMENTARII, 2024, 45(9): 3147-3160.