考虑椭圆孔组合偏转的冷却布局多维高效优化

  • 郭嘉杰 ,
  • 陶志 ,
  • 宋立明 ,
  • 李军
展开
  • 西安交通大学

收稿日期: 2024-11-29

  修回日期: 2025-03-13

  网络出版日期: 2025-03-19

基金资助

国家科技重大专项

Multi-dimensional and efficient optimization of cooling layout considering the combination of oval hole inclination angles

  • GUO Jia-Jie ,
  • TAO Zhi ,
  • SONG Li-Ming ,
  • LI Jun
Expand

Received date: 2024-11-29

  Revised date: 2025-03-13

  Online published: 2025-03-19

Supported by

National Science and Technology Major Project

摘要

为深入挖掘考虑椭圆孔组合偏转的多变量设计空间,进一步提升凹槽叶顶的气热性能,采用稳态RANS数值模拟方法开展了凹槽叶顶的冷却布局优化研究,探究了优化结构的流场变化与性能提升机理。更为重要的是,为加速工程算例的优化速率,根据传统进化类算法框架,结合前沿优化算子,发展了适用于高维工程问题、快速收敛的优化算法并进行了函数测试,随后按单目标、双目标的次序开展了优化工作。优化结构降低了冷却孔布置间隔,采用大角度的正轴向偏转角提升了气膜贴壁性能,并且平衡了气膜覆盖与冷却孔朝向的耦合关系。结果显示优化结构的气膜冷却效率相较于参考结构提升了79.9%,同时级效率上升了0.054%。

本文引用格式

郭嘉杰 , 陶志 , 宋立明 , 李军 . 考虑椭圆孔组合偏转的冷却布局多维高效优化[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31584

Abstract

To further explore the multivariate design space considering the combination of oval hole inclination angles, with a view to enhancing the aero-thermal performance of the squealer tip, the steady-state RANS numerical simulation method was employed to optimize the cooling layout on a squealer tip. The variation of the flow field and the resulting performance improvement were analyzed. More importantly, in order to accelerate the rate of engineering optimization, optimization algorithms with a high rate of convergence, which are suitable for high-dimensional engineering projects, have been developed based on the framework of a classical evolutionary algorithm and advanced optimization operators. Following classical function testing, a mixed optimization of single objective and bi-objective was conducted. The results demonstrated that in the optimal structure, the spacing between cooling holes is reduced, the wall attachment performance is improved with elevated positive axial inclination angles, and the coupling relationship between film coverage and cooling hole orientation is better balanced. The film cooling effectiveness is increased by 79.9%, and the enhancement of stage efficiency reaches 0.054% in comparison to the benchmark structure.

参考文献

[1]Booth T C.Importance of tip clearance flows in turbine design[J].Tip Clearance Effects in Axial Tur-bomachines, , :- [2]DENTON J D.The 1993 IGTI scholar lecture: loss mechanisms in turbomachines[J].Journal of Tur-bomachinery, 1993, 115(4):621-656 [3]Ameri A A, Steinthorsson E.Prediction of unshrouded rotor blade tip heat transfer[M]. American Society of Mechanical Engineers, 1995. [4]Kwak JS, Han JC.Heat-Transfer Coefficients of a Tur-bine Blade-Tip and Near-Tip Regions[J]. Journal of Thermophysics and Heat Transfer, 2003, 17: 3. [5]Jeong JS, Lee SW.Full Aerodynamic Loss Data for Efficient Squealer Tip Design in an Axial Flow Tur-bine[J]. Energy, 2020, 206: 118170. [6]Zou ZP, Xuan LM, Chen YM, et al.Effects of Flow Structure on Heat Transfer of Squealer Tip in a Turbine Rotor Blade[J]. International Communications in Heat and Mass Transfer, 2020, 114: 104588. [7]杜昆,李军.涡轮叶片凹槽状叶顶非定常流动传热特性的数值研究[J].推进技术, 2017, 38(03):551-558 [8]Ye ML, He K, Yan X.Influence of Wear Damages on Aerodynamic and Heat Transfer Performance in Squealer Tip Gap. Applied Thermal Engineering, 2019, 159: 113976. [9]黄明,张垲垣,李志刚,等.涡轮动叶气膜冷却结构的凹槽状叶顶气热性能不确定性量化[J].航空学报, 2024, 45(19):629979- [10]HUANG M,ZHANG K Y,LI Z G,et al.Uncertain-ty quantification of aerothermal performance ofsqueal-er tip with film cooling structure[J].Acta Aero-nautica et Astronautica Sinica, 2024, 45(19):629979- [11]李会, 黄通, 苏欣荣, 等.基于模拟的叶顶泄漏流与尾迹非定常干涉机理[J].航空学报, 2023, 44(14):87-97 [12]LI H,HUANG T,SU X R,et al.DDES analysis of unsteady characteristics of interaction between tip leakage flow and wake[J].Acta Aeronautica et As-tronautica Sinica, 2023, 44(14):628325- [13]Ahn J, Mhetras S, Han JC.Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint[J]. Journal of Heat Transfer, 2005, 127: 521-530. [14]GAO J, ZHENG Q, ZHANG Z, et al.. Aero-thermal performance improvements of unshrouded turbines through management of tip leakage and injection flows[J]. Energy, 2014, 69:648-660. [15]Li CX, Xiang JC, Song LM, et al.An Aerothermal Analysis of the Effects of Tip Gap Height and Cavi-ty Depth of a Gas Turbine Blade[J]. International Jour-nal of Thermal Sciences, 2020, 158: 106521. [16]黄琰,晏鑫,何坤等.气膜孔分布对凹槽叶顶传热和冷却性能的影响[J].西安交通大学学报, 2016, 50(05):101-107 [17]ZHOU Z, CHEN S, LI W, et al.. Thermal performance of blade tip and casing coolant injection on a turbine blade with cavity and winglet-cavity tip[J].International Journal of Heat and Mass Transfer, 2019, 130:585-602. [18]王宇凡,张伟昊,邹正平,等.凹槽叶顶冷气射流对涡轮叶尖泄漏流动的影响[J].工程热物理学报, 2021, 42(3):619-625 [19]于金杏, 叶明亮, 何坤, 等.压力侧冷却流对凹槽叶顶气膜冷却与传热性能的影响[J].西安交通大学学报, 2022, 56(03):160-172 [20]Maral H, Senel CB, Deveci K, et al.A Genetic Algo-rithm Based Multi-Objective Optimization of Squealer Tip Geometry in Axial Flow Turbines: A Constant Tip Gap Approach[J].Journal of Fluids Engineering, 2020, 142(021402):1-12 [21]李琛玺,郭振东,宋立明等.凹槽状叶顶气膜孔优化设计与知识挖掘[J].推进技术, 2019, 40(02):276-284 [22]Kang Y S,Rhee D H,Kim C T,et al.. Aerodynamic Optimization of Axial Turbine Tip Cavity with Approx-imation Model[C]. ASME 2013 Turbine Blade Tip Symposium, 2013: TBTS2013-2079. [23]金家辉, 宋彦萍, 俞建阳, 等.基于样条曲面及代理模型的涡轮叶顶修型研究[J].工程热物理学报, 2019, 40(01):49-54 [24]Maesschalck C D, Andreoli V, Paniagua G, Gillen T, Barker B.Aerothermal Optimization of Turbine Squealer Tip Geometries With Arbitrary Cooling Injec-tion [J]. J. Turbomach. 2021, 143(11): 111010. [25]E.E. Halila, D.T. Lenahan, T.T. Thomas. Energy Effi-cient Engine High-Pressure Turbine Test Hardware De-tailed Design Report. NASA CR-167955, 1982. [26]J.Ahn,S[J].Mhetras, J.C. Han. Film-cooling effective-ness on a gas turbine blade tip using pressure sensitive paint. Journal of Heat Transfer, 2005, 127(5):521-530 [27]J.S. Kwak,J[J].Ahn, J. Han, et al.. Gaugler. Heat Transfer Coefficients on the Squealer Tip and Near-Tip Regions of a Gas Turbine Blade With Single or Double Squealer. Journal of Turbomachinery, 2003, 125(4):778-787 [28]Zhao W, Wang L, Mirjalili S.Artificial hummingbird algorithm: A new bio-inspired optimizer with its engi-neering applications[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114194. [29]Deb K, Pratap A, Agarwal S, et al.A fast and elitist multiobjective genetic algorithm: NSGA-II[J].IEEE transactions on evolutionary computation, 2002, 6(2):182-197 [30]Guo Z, Zhang Z, Chen Y, et al.An efficient surrogate-assisted differential evolution algorithm for tur-bomachinery cascades optimization with more than 100 variables[J]. Aerospace Science and Technology, 2023, 142: 108675. [31]C.Liu, Y. Wang, Y. Yang, et al.. New omega vortex identification method [J]. Sci. China Phys. Mech. As-tron., 2016, 59: 684711.
文章导航

/