FLASH:无人机滑坡灾害轻巧感知系统

  • 陈琳 ,
  • 朱庆 ,
  • 胡翰 ,
  • 丁雨淋 ,
  • 顾朋鑫
展开
  • 西南交通大学

收稿日期: 2024-09-30

  修回日期: 2025-03-13

  网络出版日期: 2025-03-19

基金资助

国家自然科学基金;国家自然科学基金;国家自然科学基金

FLASH: Flexible and Lightweight Awareness of Slope Hazard

  • CHEN Lin ,
  • ZHU Qing ,
  • HU Han ,
  • DING Yu-Lin ,
  • GU Peng-Xin
Expand

Received date: 2024-09-30

  Revised date: 2025-03-13

  Online published: 2025-03-19

摘要

面向断路、断电、断网等极端条件下重大滑坡灾害应急抢险需求,针对当前灾情解译流程时效性差、数据处理链条割裂、灾情解译周期长等问题,本文设计并研制了一种无人机滑坡灾害轻巧感知系统FLASH。该系统由硬件和算法两部分构成:硬件系统包括轻巧感知和实时解译模块,整个系统设计为可解耦的独立节点,并采用ROS系统消息机制和串口通信实现低时延通信,峰值功率仅25瓦,重量500克;算法部分提出了顾及空间信息约束的轻量化模型,该模型在保持推理精度不下降同时大幅减少超高分辨率影像语义分割的时延,单张7952×5304影像推理延迟仅为78.88毫秒,并结合深度语义表征实现多影像的滑坡智能检索与方量估算,以松潘滑坡为例,滑坡方量估计可靠性达81%。该系统最终实现了从影像采集到滑坡方量估算的关键灾情信息全流程自动化提取,显著提升了滑坡灾情解译效率。

本文引用格式

陈琳 , 朱庆 , 胡翰 , 丁雨淋 , 顾朋鑫 . FLASH:无人机滑坡灾害轻巧感知系统[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31293

Abstract

To address the urgent needs of emergency response for major landslide disasters under extreme conditions such as disconnected roads, power outages, and network failures, this study designs and develops FLASH, a lightweight UAV-based landslide perception system. Targeting inefficiencies in current disaster interpretation workflows—including poor timeliness, fragmented data processing chains, and prolonged assessment cycles—the system integrates hardware and algorithmic innovations. The hardware component features a compact perception module and real-time interpretation unit, designed as decoupled standalone nodes. Utilizing ROS-based messaging and serial communication for low-latency data transfer, the system operates at a peak power of 25 watts and weighs 500 grams. Algorithmically, a lightweight model incorporating spatial-informational constraints is proposed, which maintains inference accuracy while drastically reducing latency for semantic segmentation of ultra-high-resolution images (e.g., 78.88 ms per 7952×5304 image). The model further enables intelligent multi-image landslide retrieval and volume estimation via deep semantic representation, achieving 81% reliability in volume calculations (validated in the Songpan landslide case) without relying on 3D reconstruction. The system has ultimately achieved fully automated extraction of critical disaster information throughout the entire workflow, from image acquisition to landslide volume estimation, significantly enhancing the efficiency of landslide disaster interpretation.

参考文献

[1] 朱庆, 曾浩炜, 丁雨淋, 等. 重大滑坡隐患分析方法综述[J]. 测绘学报, 2019, 48(12): 1551-1561.
ZHU Q, ZENG H W, DING Y L, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561.
[2] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454.
Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454.
[3] Wang X, Fan X, Xu Q, et al. Change detection-based co-seismic landslide mapping through extended morphological profiles and ensemble strategy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187: 225-239.
[4] Chen L, Ding Y, Hu H, et al. Landslide Extraction Using Fused Local and Nonlocal Attentional Features on Edge Device Toward Embedded UAV Emergency Response[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-20.
[5] 朱庆, 曹振宇, 林珲, 等. 应急测绘保障体系若干关键问题研究[J]. 武汉大学学报(信息科学版), 2014, 39(5): 551-555.
ZHU Q, CAO Z Y, LIN H, et al. Key Technologies of Emergency Surveying and Mapping Service System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 551-555.
[6] 刘飞, 朱庆, 丁雨淋, 等. 滑坡—堰塞湖灾情无人机应急测绘、分析与险情模拟[J]. 山地学报, 2021, 39(4): 600-610.
LIU F, ZHU Q, DING Y L, et al. Analysis and Simulation of Landslide-barrier Lake Disaster Based on UAV Emergency Mapping[J]. Mountion Research, 2021, 39(4): 600-610.
[7] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报 ( 信息科学版), 2014, 39(5): 505-513.
LI D R, LI M. Research Advance and Application Prospect of UnmannedAerial Vehicle Remote Sensing System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505-513.
[8] Liu P, Wei Y, Wang Q, et al. Research on post-earthquake landslide extraction algorithm based on improved U-Net model[J]. Remote Sensing, 2020, 12(5): 894.
[9] Yao Z, Cheng W, Zhang W, et al. The rise of UAV fleet technologies for emergency wireless communications in harsh environments[J]. IEEE Network, 2022, 36(4): 28-37.
[10] Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 3431-3440.
[11] Li M, Zhao X, Li J, et al. ComNet: Combinational neural network for object detection in UAV-borne thermal images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(8): 6662-6673.
[12] Dong Z, An S, Zhang J, et al. L-unet: A landslide extraction model using multi-scale feature fusion and attention mechanism[J]. Remote Sensing, 2022, 14(11): 2552.
[13] Chen H, He Y, Zhang L, et al. A landslide extraction method of channel attention mechanism U-Net network based on Sentinel-2A remote sensing images[J]. International Journal of Digital Earth, 2023, 16(1): 552-577.
[14] Ji S, Yu D, Shen C, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6): 1337-1352.
[15] Macenski S, Foote T, Gerkey B, et al. Robot Operating System 2: Design, architecture, and uses in the wild[J]. Science Robotics, 2022, 7(66): eabm6074.
[16] Chen Y, Dai X, Chen D, et al. Mobile-former: Bridging mobilenet and transformer[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 5270-5279.
[17] Mehta S, Rastegari M. MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer[A]. arXiv, 2022.
[18] Dehghani M, Arnab A, Beyer L, et al. The Efficiency Misnomer[A]. arXiv, 2022.
[19] Vasu P K A, Gabriel J, Zhu J, et al. Mobileone: An improved one millisecond mobile backbone[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 7907-7917.
[20] Ding X, Zhang X, Ma N, et al. Repvgg: Making vgg-style convnets great again[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 13733-13742.
[21] Vaswani A. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017.
[22] Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 3146-3154.
[23] Katharopoulos A, Vyas A, Pappas N, et al. Transformers are rnns: Fast autoregressive transformers with linear attention[C]//International conference on machine learning. PMLR, 2020: 5156-5165.
[24] Han D, Ye T, Han Y, et al. Agent Attention: On the Integration of Softmax and Linear Attention[A]. arXiv, 2024.
[25] Xie E, Wang W, Yu Z, et al. SegFormer: Simple and efficient design for semantic segmentation with transformers[J]. Advances in neural information processing systems, 2021, 34: 12077-12090.
[26] Guo M H, Lu C Z, Hou Q, et al. Segnext: Rethinking convolutional attention design for semantic segmentation[J]. Advances in Neural Information Processing Systems, 2022, 35: 1140-1156.
[27] 方群生, 唐川, 程霄, 等. 汶川震区泥石流流域内滑坡物源量计算方法探讨[J]. 水利学报, 2015, 46(11): 1298-1304.
FANG Q S, TANG C, CHENG X, et al. An calculation method for predicting landslides volumes of the debris flows in the Wenchuan earthquake area[J]. Journal of Hydraulic Engineering, 2015, 46(11): 1298-1304.
[28] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[29] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[M]//Navab N, Hornegger J, Wells W M, et al. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: Vol. 9351. Cham: Springer International Publishing, 2015: 234-241.
[30] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 801-818.
[31] Yan S, Wu C, Wang L, et al. Ddrnet: Depth map denoising and refinement for consumer depth cameras using cascaded cnns[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 151-167.
[32] Yu C, Wang J, Peng C, et al. Bisenet: Bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 325-341.
[33] Li X, Zhou Y, Pan Z, et al. Partial order pruning: for best speed/accuracy trade-off in neural architecture search[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 9145-9153.
[34] Li X, You A, Zhu Z, et al. Semantic Flow for Fast and Accurate Scene Parsing[M]//Vedaldi A, Bischof H, Brox T, et al. Computer Vision – ECCV 2020: Vol. 12346. Cham: Springer International Publishing, 2020: 775-793.
文章导航

/