[1] 朱庆, 曾浩炜, 丁雨淋, 等. 重大滑坡隐患分析方法综述[J]. 测绘学报, 2019, 48(12): 1551-1561.
ZHU Q, ZENG H W, DING Y L, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561.
[2] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454.
Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454.
[3] Wang X, Fan X, Xu Q, et al. Change detection-based co-seismic landslide mapping through extended morphological profiles and ensemble strategy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187: 225-239.
[4] Chen L, Ding Y, Hu H, et al. Landslide Extraction Using Fused Local and Nonlocal Attentional Features on Edge Device Toward Embedded UAV Emergency Response[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-20.
[5] 朱庆, 曹振宇, 林珲, 等. 应急测绘保障体系若干关键问题研究[J]. 武汉大学学报(信息科学版), 2014, 39(5): 551-555.
ZHU Q, CAO Z Y, LIN H, et al. Key Technologies of Emergency Surveying and Mapping Service System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 551-555.
[6] 刘飞, 朱庆, 丁雨淋, 等. 滑坡—堰塞湖灾情无人机应急测绘、分析与险情模拟[J]. 山地学报, 2021, 39(4): 600-610.
LIU F, ZHU Q, DING Y L, et al. Analysis and Simulation of Landslide-barrier Lake Disaster Based on UAV Emergency Mapping[J]. Mountion Research, 2021, 39(4): 600-610.
[7] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报 ( 信息科学版), 2014, 39(5): 505-513.
LI D R, LI M. Research Advance and Application Prospect of UnmannedAerial Vehicle Remote Sensing System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505-513.
[8] Liu P, Wei Y, Wang Q, et al. Research on post-earthquake landslide extraction algorithm based on improved U-Net model[J]. Remote Sensing, 2020, 12(5): 894.
[9] Yao Z, Cheng W, Zhang W, et al. The rise of UAV fleet technologies for emergency wireless communications in harsh environments[J]. IEEE Network, 2022, 36(4): 28-37.
[10] Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 3431-3440.
[11] Li M, Zhao X, Li J, et al. ComNet: Combinational neural network for object detection in UAV-borne thermal images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(8): 6662-6673.
[12] Dong Z, An S, Zhang J, et al. L-unet: A landslide extraction model using multi-scale feature fusion and attention mechanism[J]. Remote Sensing, 2022, 14(11): 2552.
[13] Chen H, He Y, Zhang L, et al. A landslide extraction method of channel attention mechanism U-Net network based on Sentinel-2A remote sensing images[J]. International Journal of Digital Earth, 2023, 16(1): 552-577.
[14] Ji S, Yu D, Shen C, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6): 1337-1352.
[15] Macenski S, Foote T, Gerkey B, et al. Robot Operating System 2: Design, architecture, and uses in the wild[J]. Science Robotics, 2022, 7(66): eabm6074.
[16] Chen Y, Dai X, Chen D, et al. Mobile-former: Bridging mobilenet and transformer[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 5270-5279.
[17] Mehta S, Rastegari M. MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer[A]. arXiv, 2022.
[18] Dehghani M, Arnab A, Beyer L, et al. The Efficiency Misnomer[A]. arXiv, 2022.
[19] Vasu P K A, Gabriel J, Zhu J, et al. Mobileone: An improved one millisecond mobile backbone[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 7907-7917.
[20] Ding X, Zhang X, Ma N, et al. Repvgg: Making vgg-style convnets great again[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 13733-13742.
[21] Vaswani A. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017.
[22] Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 3146-3154.
[23] Katharopoulos A, Vyas A, Pappas N, et al. Transformers are rnns: Fast autoregressive transformers with linear attention[C]//International conference on machine learning. PMLR, 2020: 5156-5165.
[24] Han D, Ye T, Han Y, et al. Agent Attention: On the Integration of Softmax and Linear Attention[A]. arXiv, 2024.
[25] Xie E, Wang W, Yu Z, et al. SegFormer: Simple and efficient design for semantic segmentation with transformers[J]. Advances in neural information processing systems, 2021, 34: 12077-12090.
[26] Guo M H, Lu C Z, Hou Q, et al. Segnext: Rethinking convolutional attention design for semantic segmentation[J]. Advances in Neural Information Processing Systems, 2022, 35: 1140-1156.
[27] 方群生, 唐川, 程霄, 等. 汶川震区泥石流流域内滑坡物源量计算方法探讨[J]. 水利学报, 2015, 46(11): 1298-1304.
FANG Q S, TANG C, CHENG X, et al. An calculation method for predicting landslides volumes of the debris flows in the Wenchuan earthquake area[J]. Journal of Hydraulic Engineering, 2015, 46(11): 1298-1304.
[28] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[29] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[M]//Navab N, Hornegger J, Wells W M, et al. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: Vol. 9351. Cham: Springer International Publishing, 2015: 234-241.
[30] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 801-818.
[31] Yan S, Wu C, Wang L, et al. Ddrnet: Depth map denoising and refinement for consumer depth cameras using cascaded cnns[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 151-167.
[32] Yu C, Wang J, Peng C, et al. Bisenet: Bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 325-341.
[33] Li X, Zhou Y, Pan Z, et al. Partial order pruning: for best speed/accuracy trade-off in neural architecture search[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 9145-9153.
[34] Li X, You A, Zhu Z, et al. Semantic Flow for Fast and Accurate Scene Parsing[M]//Vedaldi A, Bischof H, Brox T, et al. Computer Vision – ECCV 2020: Vol. 12346. Cham: Springer International Publishing, 2020: 775-793.