飞翼布局战斗机独特的优势使其成为未来先进战斗机发展方向之一。面对具有新型舵面配置的飞翼布局飞机在着舰控制过程中存在的非线性、控制量冗余且耦合、舰尾流干扰等问题,本文建立了多操纵面无尾布局飞机六自由度非线性数学模型,提出了一种基于增量非线性动态逆(INDI)控制框架的直接力着舰控制律:非线性增量动态逆方法设计直接力航迹控制律、姿态角控制律和速度保持控制律,并设计了固定时间干扰观测器(FTDO)用于估计和补偿直接力控制回路和姿态控制回路之间的耦合,实现两个回路之间的动态解耦。考虑各种舵面特性和推力矢量的执行能力,设计了气动舵面与推力矢量一体化直接力控制方法,使用气动系数雅可比矩阵将非线性控制分配问题转化成增量线性控制分配问题,在线快速解算实际舵面偏转增量。仿真验证表明:在飞翼布局舰载机着舰控制律中引入基于增量非线性动态逆的直接力控制,可以提高该种布局形式舰载机在舰尾流干扰情况下快速修正航迹、抑制舰尾流干扰的能力,最终显著提高该类飞机着舰的精度,为飞翼布局舰载机上舰提供一种思路。
The unique advantages of the flying-wing aircraft make it one of the future directions for advanced fighter development. Facing the nonlinearity, redundancy and coupling of control surfaces, and interference from ship wakes in the landing control process of flying-wing aircraft with novel rudder configurations, this paper establishes a six-degree-of-freedom nonlinear mathematical model of tailless aircraft with multiple control surfaces. A direct force control law based on the Incremental Nonlinear Dynamic Inversion (INDI) control framework is proposed: t the nonlinear incremental dynamic inversion method designs direct force trajectory control laws, attitude angle control laws, and speed maintenance control laws. Additionally, a Fixed-Time Disturbance Observer (FTDO) is designed to estimate and compensate for the coupling between the direct force control loop and the attitude control loop, achieving dynamic decoupling between the two loops. Considering various control surface characteristics and the execution capability of thrust vectoring, an integrated direct force control method combining aerodynamic control surfaces and thrust vectoring is designed. The nonlinear control allocation problem is transformed into an incremental linear control allocation problem using the aerodynamic coefficient Jacobian matrix, allowing for rapid online calculation of actual control surface deflection increments. Simulation verifica-tion shows that introducing direct force control based on incremental nonlinear dynamic inversion into the landing control law of flying-wing carrier-based aircraft can enhance the ability of such aircraft to quickly correct trajectories and sup-press airwake, ultimately significantly improving the precision of aircraft landing and providing a solution for the deployment of flying-wing carrier-based aircraft.
[1]张伟, 赵轲, 夏露, 等.飞翼布局翼型系列设计进展[J].空气动力学学报, 2021, 39(06):37-52
[2]陈清阳, 辛宏博, 王鹏, 等.飞翼布局飞行器研究现状分析[J].国防科技大学学报, 2024, 46(03):39-58
[3] Whittenbury J.Configuration design development of the navy UCAS-D X-47B[C]//AIAA Centennial of Naval Aviation Forum" 100 Years of Achievement and Progress" . 2011: 7041.
[4]甄子洋, 王新华, 江驹, 等.舰载机自动着舰引导与控制研究进展[J].航空学报, 2017, 38(02):127-148
[5]张志冰, 甄子洋, 江驹, 等.舰载机自动着舰引导与控制综述[J].南京航空航天大学学报, 2018, 50(06):734-744
[6]甄子洋.舰载无人机自主着舰回收制导与控制研究进展[J].自动化学报, 2019, 45(04):669-681
[7] 杨一栋, 余俊雅.舰载飞机着舰引导与控制[M].北京: 国防工业出版社, 2007: 131-148.
[8]Yuan Y, Duan H, Zeng Z.Automatic carrier landing control with external disturbance and input con-straint[J].IEEE Transactions on Aerospace and Elec-tronic Systems, 2022, 59(2):1426-1438
[9]YU Y, WANG H, LI N, et al.Automatic carrier landing system based on active disturbance rejection control with a novel parameters optimizer[J].Aerospace science and technology, 2017, 69(1):149-160
[10] DENHAM J W.Project MAGIC CARPET:“advanced controls and displays for precision carrier land-ings”[C]//54th AIAA Aerospace Sciences Meeting. 2016: 1770.
[11] 吴文海, 汪节, 高丽, 等. MAGIC CARPET着舰技术分析 [J]. 系统工程与电子技术, 2018, 40 (09): 2079-2091.
[12]段卓毅, 王伟, 耿建中, 等.舰载机人工进场着舰精确轨迹控制技术[J].航空学报, 2019, 40(4):6-20
[13]张志冰, 张秀林, 王家兴, 等.一种基于多操纵面控制分配的人工着舰精确控制方法[J].航空学报, 2021, 42(8):142-157
[14]罗飞, 张军红, 王博, 等.基于直接升力与动态逆的舰尾流抑制方法[J].航空学报, 2021, 42(12):193-208
[15] GUAN Z, LIU H, ZHENG Z, et al. Moving path fol-lowing with integrated direct lift control for carrier landing[J]. Aerospace Science and Technology, 2022, 120: 107247.
[16] 张孝伟.飞翼舰载无人机着舰控制技术研究[D]. 南京航空航天大学, 2017.
[17]王峰.多操纵面先进布局舰载无人机飞行控制技术研究[D]. 南京航空航天大学, 2022.
[18] ADDINGTON G A.Control-surface deflection effects on the innovative control effectors (ICE 101) de-sign[M]. Air Vehicles Directorte, Air Force Research Laboratory, Air Force Materiel Command, 2000.
[19] GILLARD W J.Innovative control effectors (configu-ration 101) dynamic wind tunnel test report rotary bal-ance and forced oscillation tests[R]. AFRL-VA-WP-TR-1998-3043, 1998.
[20]NIESTROY M A, DORSETT K M, Markstein K.A tailless fighter aircraft model for control-related re-search and development[C]//AIAA modeling and simulation technologies conference. 2017: 1757.
[21]HRISTOV G.Innovative Control Effectors for Maneuvering of Air Vehicles[J].Illinois Tech Undergraduate Research Journal, 2015.
[22]马超, 王立新.飞翼布局作战飞机起降特性分析[J].北京航空航天大学学报, 2009, 35(04):429-433