复合材料飞机电气结构网络系统电气特性分析

  • 杨占刚 ,
  • 魏宇昊 ,
  • 杨娟
展开
  • 中国民航大学

收稿日期: 2024-12-19

  修回日期: 2025-02-20

  网络出版日期: 2025-02-25

基金资助

天津市航空装备安全性与适航技术创新中心开放基金

Electrical characterisation of composite aircraft electrical structure network system

  • YANG Zhan-Gang ,
  • WEI Yu-Hao ,
  • YANG Juan
Expand

Received date: 2024-12-19

  Revised date: 2025-02-20

  Online published: 2025-02-25

Supported by

the Open Fund of Tianjin Aviation Equipment Safety and Airworthiness Technology Innovation Center

摘要

复合材料的高电阻性会影响飞机原有的导电路径,为保障飞机电气系统的正常运行,需要构建复合材料飞机电气结构网络系统模型来探究其电气特性。首先,针对电磁场下电气结构网络电气特性的计算问题,本文采用有限元法与稳定双共轭梯度法共同构建电气结构网络系统模型,计算空间优化值达到63.92%。其次,通过对多类型激励源/多区域接入点组合的探究,分析了区域阻抗特性、电势分布图谱、电流密度矢量等多维度电学结果及性能影响。通过构建与测量实物模型,对实测结果与仿真结果进行差异化分析,并验证了符合适航规章HB 6129。最后,基于实际工况角度与适航规章,对系统模型进行接触因素系统误差分析、精细化理想模型分析及部件应力因素分析。所获结果及分析对复合材料飞机/电动飞机的电气性能指标具有重要意义。

本文引用格式

杨占刚 , 魏宇昊 , 杨娟 . 复合材料飞机电气结构网络系统电气特性分析[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31685

Abstract

The high resistivity of composite materials will affect the original conductive path of the aircraft, in order to ensure the normal operation of the aircraft electrical system, it is necessary to construct a composite aircraft electrical structure network system model to explore its electrical characteristics. Firstly, for the calculation of the electrical characteristics of the electrical structure network under electromagnetic field, this paper adopts the finite element method and the sta-ble double conjugate gradient method to jointly construct the electrical structure network system model, and the optimi-sation value of the calculation space reaches 63.92%. Secondly, by exploring the combination of multi-type excitation sources/multi-area access points, the multi-dimensional electrical results and performance impacts, such as area im-pedance characteristics, potential distribution profiles, and current density vectors, are analyzed. By constructing and measuring the physical model, the difference between the measured and simulated results is analyzed, and the compli-ance with the airworthiness regulation HB 6129 is verified. Finally, based on the actual working condition perspective and airworthiness regulation, the system model is analyzed for contact factor system error, refined ideal model analysis and component stress factor analysis. The obtained results and analyses are of great significance for the electrical performance index of composite/electric aircraft.

参考文献

[1]YUE X, AN L, YE X, et al.Effect of gap and shims on the strain and stress state of the composite-aluminum hybrid bolted structure[J].International Journal of Aerospace Engineering, 2020, (1):8811484- [2]JIN Z, GANG L, UDAY V, et al.Past, present and fu-ture prospective of global carbon fibre composite de-velopments and applications [J].Composites Part B, 2023, (250):110463- [3]CORVELEYN S, LACHAUD F, BERTHET F, et al.Long-term creep behavior of a short carbon fiber-reinforced PEEK at high temperature: Experimental and modeling approach[J].Composite structures, 2022, (290):115485- [4]GEBREHIWET L, ABATE E, NEGUSSIE Y, et al.Application of composite materials in aerospace & au-tomotive industry[J].International Journal of Advances in Engineering and Management, 2023, 5(3):697-723 [5]PERRAUD R, URREA O, PELEGRIN T, et al.Installa-tion of metallic strip on CRFP frames: Assessment of IS13 mechanical and electrical performance[C]//Smart Intelligent Aircraft Structures (SARISTU) Proceedings of the Final Project Conference. Springer International Publishing, 2016: 959-968. [6]GAO R X K, LEE H M, EWE W B, et al.Electromag-netic characterization and measurement of conductive aircraft CFRP composite for lightning protection and EMI shielding[J].IEEE Transactions on Instrumentation and Measurement, 2023, (72):1-11 [7]ZHAO T, CHEN Y, XU W, et al.Research on multi-physical field simulation modeling of nacelle CFRP-metal structure by lightning strike[C]//2023 6th Inter-national Conference on Energy, Electrical and Power Engineering (CEEPE). IEEE, 2023: 211-219. [8]GUTIERREZ G G, ROMERO D M, CABELLO M R, et al.On the design of aircraft electrical structure net-works[J].IEEE Transactions on Electromagnetic Com-patibility, 2016, 58(2):401-408 [9]陈晋吉.飞机电磁兼容预测仿真研究[D].西安电子科技大学, 2013. [11]缪星星.机舱内电子设备与通信导航系统间的电磁兼容性研究[D].南京航空航天大学, 2013. [13]马凯.轻型飞机电气系统及电磁防护方案设计[D].重庆大学, 2022.DOI:10.27670/d.cnki.gcqdu.2020.004576. [15]石旭东, 卜兆文, 隋政等.基于线模型的复合材料飞机接地网建模与仿真[J].科学技术与工程, 2020, 20(15):6273-6278 [17]REVEL I, PICHE A, PERES G, et al.Modeling strat-egy for functional current return in large CFRP struc-tures for aircraft applications[C]//International Sympo-sium on Electromagnetic Compatibility-emc Europe. IEEE, 2008.DOI:10.1109/EMCEUROPE.2008.4786843. [18]卜兆文.复合材料飞机接地网电流分布与闪电防护仿真[D].中国民航大学, 2021.DOI:10.27627/d.cnki.gzmhy.2020.000262. [20]GOLEANU A L, DUNAND M, GUICHON J M, et al.Towards the conception and optimisation of the current return path in a composite aircraft[C]//2010 IEEE In-ternational Systems Conference. IEEE, 2010: 466-471. [21]PICHE A, PERRAUD R, LOCHOT C.Modeling of large avionic structures in electrical network simula-tions[C]//2012 ESA Workshop on Aerospace EMC. IEEE, 2012: 1-5. [22]BANDINELLI M, MORI A, BERCIGLI M, et al.A surface PEEC formulation for the analysis of electrical networks in airplanes[C]//2013 IEEE International Symposium on Electromagnetic Compatibility. IEEE, 2013: 694-700. [23]BANDINELLI M, MORI A, GALGANI G, et al.A surface PEEC formulation for high-fidelity analysis of the current return networks in composite aircrafts[J].IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5):1027-1036 [24]BANDINELLI M, MORI A, ANTONINI G, et al.Nu-merical analysis of avionic grounding structures with surface PEEC formulation[C]//2015 9th European Con-ference on Antennas and Propagation (EuCAP). IEEE, 2015: 1-5. [25]黄振庭.客机舱门机构参数优化设计[D].清华大学, 2013. [27]樊茂华.复合材料层合板在火灾环境下的热响应研究[D].中国民航大学, 2020. [29]张起浩.复合材料飞机雷电间接效应电磁屏蔽及影响因素分析[D].中国民航大学, 2022.DOI:10.27627/d.cnki.gzmhy.2022.000249. [31]AXENOV V, TARASOV I, SHEVTSOV S, et al.Opti-mal cure control synthesis for FEM model of aircraft composite part with CAD imported geometry[C]//2017 International Conference on Mechanical, System and Control Engineering (ICMSC). IEEE, 2017: 6-10. [32]DONG Z, YAN L, SU H.Modal analysis of an external rotor machine for electric propulsion aircraft[C]//2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2022: 1658-1662. [33]解江, 牟浩蕾, 冯振宇等.大飞机典型货舱下部结构冲击试验及数值模拟[J].航空学报, 2022, 43(06):261-272 [35]LYU G, TERAO Y, OHSAKI H.Magnetic field simula-tion of HTS cable based on flight mission profile by fi-nite element method[C]//2023 26th International Con-ference on Electrical Machines and Systems (ICEMS). IEEE, 2023: 4837-4841. [36]MORI T, SUZUKI Y, TAKI M.A matrix form represen-tation of 3D impedance method for calculations of in-duced electric fields and currents[C]//2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC). IEEE, 2016: 1-3. [37]YETKIN E F, CEYLAN O.Recycling Newton-Krylov algorithm for efficient solution of large scale power systems[J].[J].International journal of electrical power and energy systems, 2023, (144):108559- [38]刘丽娜, 朱峰, 徐常伟, 等.理想导体边界条件截断对称结构计算空间的实现[J].光电工程, 2013, 40(11):6- [40]JIN J.The finite element method in electromagnet-ics[J].[J].Journal of the Japan society of applied electromagnetics, 2002, :- [41]LEE J F, LEE R, CANGELLARIS A.Time-domain finite-element methods[J].IEEE transactions on anten-nas and propagation, 1997, 45(3):430-442 [42]HAN D, ZHAO Y, JI L, et al.Second-Order nod-al DGTD method for electromagnetic simula-tion[C]//2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2023: 1-3. [43]杨占刚, 隋政, 张起浩等.复合材料飞机接地回流网络网内压降分析[J].航空学报, 2022, 43(01):503-513
文章导航

/