碳纤维增强树脂基复合材料(简称CFRP复合材料)凭借其优异的轻质高强特性,在航空发动机领域的应用日益受到重视。然而,纤维与树脂基体间的界面问题严重制约了其性能的充分发挥。本文围绕碳纤维/基体界面力学性能及研究方法、界面损伤机理及模拟方法、界面强化机制及策略三个方面,深入探讨了现有研究进展、存在的不足以及发展趋势。研究表明,通过试验测试、微观结构表征以及解析与仿真技术可有效揭示界面对CFRP复合材料宏观力学性能的影响;界面损伤呈现分层、脱粘、裂纹扩展等多模式特征,其演化过程受力学载荷、热-机械耦合及环境因素的协同作用,通过宏观有限元模拟、微细观力学模型和多尺度模拟等数值方法能够对其进行有效表征;界面改性、纳米增强及新型树脂基体开发等界面强化策略显著提升了界面粘附性能,进而提高了复合材料的力学性能。然而,CFRP复合材料在航空发动机极端服役环境下的应用仍面临以下挑战:现有界面力学性能表征技术存在局限性,多物理场多尺度耦合损伤机理研究不足,界面强化效果的长期稳定性有待提升。解决这些关键问题,将为提升CFRP复合材料在航空发动机等高端装备中的服役可靠性提供重要的理论指导和技术支持。
彭苗娇
,
黄锦文
,
胡殿印
,
王荣桥
,
杨俊杰
,
贾志刚
,
陈清林
,
孙义沣
,
蔡应强
,
范宽
,
朱兆一
,
李晓文
. 面向航空发动机的CFRP复合材料界面力学性能、损伤机理与强化策略的研究进展[J]. 航空学报, 0
: 1
-0
.
DOI: 10.7527/S1000-6893.2025.31600
Carbon fiber-reinforced polymer (CFRP) composites, known for their exceptional lightweight and high-strength properties, are increasingly valued in the field of aero-engine applications. However, the interfacial issues between fibers and resin matrix significantly limit the full potential of CFRP composites. This paper provides an in-depth discussion on the re-search progress, existing challenges, and future trends in three key areas: interfacial mechanical properties of carbon fiber/matrix, interfacial damage mechanisms and simulation methods, and interfacial reinforcement mechanisms and strategies. The research indicates that experimental testing, microstructural characterization, and analytical simulation techniques can effectively reveal the influence of interface on the macroscopic mechanical properties of CFRP compo-sites. Interfacial damage exhibits multiple modes including delamination, debonding, and crack propagation, whose evolu-tion processes are governed by the synergistic effects of mechanical loading, thermo-mechanical coupling, and environ-mental factors. These damage mechanisms can be effectively characterized through numerical methods such as macro-scopic finite element simulation, micro- and meso-mechanical models, and multi-scale simulations. Interfacial modification, nano-reinforcement, and novel resin matrix development strategies have significantly enhanced interfacial adhesion properties, thereby improving the mechanical performance of composites. Nevertheless, the application of CFRP com-posites in the extreme service environments of aero-engines still faces several challenges: limitations in existing interfa-cial mechanical property characterization techniques, insufficient research on multi-physics and multi-scale coupled damage mechanisms, and inadequate long-term stability of interfacial reinforcement effects. Addressing these critical issues will provide essential theoretical guidance and technical support for enhancing the service reliability of CFRP composites aero-engines and other high-end equipment applications.