[1] 王永庆. 固定翼舰载战斗机关键技术与未来发展[J]. 航空学报, 2021, 42(8): 21-34.
WANG Y Q. Fixed-wing carrier-based aircraft: Key technologies and future development[J]. Acta Aeronauti-ca et Astronautica Sinica, 2021, 42(8): 21-34 (in Chi-nese).
[2] JAMES W D. Project MAGIC CARPET: Advanced controls and displays for precision carrier land-ings[C]//54th AIAA Aerospace Sciences Meeting. San Diego, California, USA: AIAA, 2016: 1-14.
[3] 邓金来, 张志冰, 王家兴. 基于直接力的舰载机着舰控制技术研究[J]. 飞机设计, 2020, 40(2): 6-10.
DENG J L, ZHANG Z B, WANG J X. Reasarch on the Control Technology of Carrier Aircraft Based on Direct Force[J]. Aircraft Design, 2020, 40(2): 6-10 (in Chinese).
[4] 朱玉莲, 甄子洋, 季雨璇, 等. 舰载飞机着舰直接力控制方法[J]. 电光与控制, 2020, 27(11): 1-5.
ZHU Y L, ZHEN Z Y, JI Y X, et al. Direct Lift Control for Auto-landing of Shipboard Aircraft[J]. Electronics Optics & Control, 2020, 27(11): 1-5 (in Chinese).
[5] 张志冰, 张秀林, 王家兴, 等. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报, 2021, 42(8): 142-157.
ZHANG Z B, ZHANG X L, WANG J X, et al. An lDLC landing control method of carrier-based aircraft based on control allocation of multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 142-157 (in Chinese).
[6] 魏治强. 基于直接升力的无人机着舰技术研究[D]. 南京: 南京航空航天大学, 2020: 1-19.
WEI Z Q. Research on Automatic Carrier Landing Tech-nology Based on Direct Lift Control for Fixed Wing UAV[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 1-19 (in Chinese).
[7] 罗飞, 张军红, 王博, 等. 基于直接升力与动态逆的舰尾流抑制方法[J]. 航空学报, 2021, 42(12): 193-208.
LUO F, ZHANG J H, WANG B, et al. Air wake sup-pression method based on direct lift and nonlinear dy-namic inversion control[J]. Acta Aeronautica et Astro-nautica Sinica, 2021, 42(12): 193-208 (in Chinese).
[8] LUO F, ZHANG J H, LYU P F, et al. Carrier-based aircraft precision landing using direct lift control based on incremental nonlinear dynamic inversion[J]. IEEE Ac-cess, 2022, 10: 55709-55725.
[9] 段卓毅, 赵乐天, 张军红, 等. 基于增量动态逆的着舰控制方法研究[J/OL]. 航空工程进展,(2024-06-05)[2024-09-11].http://kns.cnki.net/kcms/detail/61.1479.v.20240605.1057.004.html.
DUAN Z Y, ZHAO L T, ZHANG J H, et al. Study on landing control method based on incremental dynamic inverse. Advances in Aeronautical Science and Engineering,(2024-06-05)[2024-09-11].http://kns.cnki.net/kcms/detail/61.1479.v.20240605.1057.004.html.
[10] 宋立廷, 周思羽, 张杨, 等. 级联式预设性能动态逆解耦直接升力着舰控制[J]. 哈尔滨工业大学学报, 2023, 55(12): 42-53.
SONG L T, ZHOU S Y, ZHANG, Y, et al. Cascaded comprehensive direct lift control law based on preseribed
performance dynamic inversion for carrier landing[J]. Journal of Harbin Institute of Technology. 2023, 55(12): 42-53 (in Chinese).
[11] 朱玉莲. 舰载机“魔毯”着舰技术研究[D]. 南京: 南京航空航天大学, 2020: 1-23.
ZHU Y L. Research on Carrier-based Aircraft "Magic Carpet" Landing Technology[D]. Nanjing: Nanjing Uni-versity of Aeronautics and Astronautics, 2020: 1-23 (in Chinese).
[12] 梁耀. 基于直接升力的无人机着舰控制技术研究[D]. 南京: 南京航空航天大学, 2021: 1-6.
LIANG Y. The Research on UAV Landing Control Technology based on Direct Lift[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 1-6 (in Chinese).
[13] 江文强. 基于直接升力控制的自动着舰技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2022: 1-8.
JIANG W Q. Research on Automatic Carrier Landing Technology Based on Direct Lift Control[D]. Harbin: Harbin Engineering University, 2022: 1-8 (in Chinese).
[14] 吴启龙, 朱齐丹. 基于线性自抗扰控制的纵向舰载机直接升力全自动着舰控制[J]. 智能系统学报, 2024, 19(1): 142-152.
WU Q L, ZHU Q D. Direct lift fully-automatic landing control of longitudinal carrier-based aircraft on basis of
linear active disturbance rejection control[J]. CAAI transactions on intelligent systems, 2024, 19(1): 142-152 (in Chinese).
[15] 孙笑云, 江驹, 甄子洋, 等. 舰载飞机自适应模糊直接力着舰控制[J]. 西北工业大学学报, 2021, 39(2): 359-366.
SUN X Y, JIANG J, ZHEN Z Y, et al. Adaptive fuzzy direct lift control of aircraft carrier-based landing[J]. Journal of Northwestern Polytechnical University, 2021, 39(2): 359-366 (in Chinese).
[16] 柳仁地, 江驹, 张哲, 等. 基于强化学习的舰载机着舰直接升力控制技术[J/OL]. 北京航空航天大学学报,(2023-04-03)[2024-09-11]. https://doi.org/10.13700/j.bh.1001-5965.
LIU R D, JANG J, ZHANG Z, et al. Direct lift control technology of carrier aircraft landing based on reinforcement learning[J/OL]. Journal of Beijing University of Aeronautics and Astronautics,(2023-04-03)[2024-09-11].https://doi.org/10.13700/j.bh.1001-5965.
[17] 雷元龙, 谢鹏, 刘业华, 等. EP-DDPG引导的着舰控制系统[J/OL]. 控制理论与应用, (2024-09-06)[2024-09-22].http://kns.cnki.net/kcms/detail/44.1240.TP.20240906.1425.008.html.
LEI Y L, XIE P, LIU Y H, et al. EP-DDPG guided carrier landing control system[J/OL]. Control Theory & Applications, (2024-09-06)[2024-09-22].http://kns.cnki.net/kcms/detail/44.1240.TP.20240906.1425.008.html.
[18] ZHOU, D P, WANG, L X. Research on Direct Lift Car-rier-Based Unmanned Aerial Vehicle Landing Control Based on Performance Index Intelligent Optimiza-tion/Dynamic Optimal Allocation[J]. Drones, 2023, 7(7): 431.
[19] WU W H, SONG L T, ZHANG Y, et al. Nonlinear com-prehensive decoupling controller based on direct lift con-trol for carrier landing[J]. IEEE Access, 2022, 10: 113875-113887.
[20] GUAN Z Y, LIU H, ZHENG Z W, et al. Moving path following with integrated direct lift control for carrier landing[J]. Aerospace Science and Technology, 2022, 120: 1-15.
[21] 周鑫, 彭荣鲲, 袁锁中. 舰载机理想着舰点垂直运动的预估与补偿[J]. 航空学报, 2013, 34(07): 1663-1669.
ZHOU X, PENG R K, YUAN S Z. Prediction and Compensation for Vertical Motion of Ideal Touchdown Point in Carrier Landing[J]. Acta Aeronautica et Astro-nautica Sinica, 2013, 34(07): 1663-1669 (in Chinese).
[22] FU C, TIAN Y, PENG C, et al. Path tracking control for eight-rotor aircraft based on linear ADRC algo-rithm[C]//2016 IEEE 11th Conference on Industrial Elec-tronics and Applications. Piscataway, NJ: IEEE Press, 2016: 2147-2152.
[23] CHEN M, GE S S, HOW B V E. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities[J]. IEEE Transactions on Neural Networks, 2010, 21(5): 796-812.
[24] MENG Y, WANG W, HAN H. Flight Control Method Using Neural Network in Prediction for Suppressing Ship Airwake Impact in Carrier Landing[J]. IEEE Aero-space and Electronic Systems Magazine, 2023, 38(7): 20-32.
[25] 安帅斌. 高机动飞机气动参数在线辨识与自适应控制[D]. 大连: 大连理工大学, 2022: 22-41.
AN S B. Online Identification of Aerodynamic Parame-ters and Adaptive Attitude Control of High Maneuver Aircraft[D]. Dalian: Dalian University of Technology, 2022: 22-41 (in Chinese).