基于离线网络/在线辨识的舰载机自抗扰控制

  • 闫明 ,
  • 王家兴 ,
  • 李贺琦 ,
  • 刘凯
展开
  • 1. 大连理工大学-
    2. 沈阳飞机设计研究所
    3. 大连理工大学

收稿日期: 2024-09-30

  修回日期: 2025-02-25

  网络出版日期: 2025-02-25

基金资助

装备预研教育部联合基金

Active disturbance rejection control of carrier-based aircraft based on offline network / online identification

  • YAN Ming ,
  • WANG Jia-Xing ,
  • LI He-Qi ,
  • LIU Kai
Expand

Received date: 2024-09-30

  Revised date: 2025-02-25

  Online published: 2025-02-25

Supported by

Joint Fund of the Ministry of Education for Equipment Pre-research

摘要

针对舰载机复杂环境强不确定性条件下的高精度着舰控制问题,本文提出了一种基于离线神经网络/在线辨识的直接升力模式舰载机自抗扰控制方法。首先,参考美国“魔毯”控制系统并分析其关键技术机理,设计舰载机直接升力着舰自抗扰控制方法,通过扩展状态观测器对阵风扰动和系统不确定项带来的总扰动进行估计补偿;其次,依据构建的着舰控制工程性能指标评价准则,筛选最优控制参数,建立以飞行模型不确定性为输入,最优着舰控制参数为输出的神经网络映射关系;最后通过在线辨识高效优化自抗扰控制参数。仿真结果表明,本文提出的方法相比基线控制器具有更高的鲁棒性,能够有效提升舰载机在干扰条件下的高精度着舰性能。

本文引用格式

闫明 , 王家兴 , 李贺琦 , 刘凯 . 基于离线网络/在线辨识的舰载机自抗扰控制[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31317

Abstract

Aiming at the high-precision landing control problem of carrier-based aircraft under complex environment and strong uncertainty, this paper proposes a direct lift mode active disturbance rejection control method based on of-fline neural network / online identification. Firstly, referring to the American ' Magic Carpet ' control system and ana-lyzing its key technical mechanism, the direct lift landing active disturbance rejection control method of carrier-based aircraft is designed. The extended state observer is used to estimate and compensate the total disturbance caused by gust disturbance and system uncertainty. Secondly, according to the evaluation criteria of landing control engi-neering performance index, the optimal control parameters are selected, and the neural network mapping relation-ship with flight model uncertainty as input and optimal landing control parameters as output is established. Finally, the active disturbance rejection control parameters are efficiently optimized by online identification. The simulation results show that the proposed method has higher robustness than the baseline controller, and can effectively im-prove the high-precision landing performance of carrier-based aircraft under interference conditions.

参考文献

[1] 王永庆. 固定翼舰载战斗机关键技术与未来发展[J]. 航空学报, 2021, 42(8): 21-34.
WANG Y Q. Fixed-wing carrier-based aircraft: Key technologies and future development[J]. Acta Aeronauti-ca et Astronautica Sinica, 2021, 42(8): 21-34 (in Chi-nese).
[2] JAMES W D. Project MAGIC CARPET: Advanced controls and displays for precision carrier land-ings[C]//54th AIAA Aerospace Sciences Meeting. San Diego, California, USA: AIAA, 2016: 1-14.
[3] 邓金来, 张志冰, 王家兴. 基于直接力的舰载机着舰控制技术研究[J]. 飞机设计, 2020, 40(2): 6-10.
DENG J L, ZHANG Z B, WANG J X. Reasarch on the Control Technology of Carrier Aircraft Based on Direct Force[J]. Aircraft Design, 2020, 40(2): 6-10 (in Chinese).
[4] 朱玉莲, 甄子洋, 季雨璇, 等. 舰载飞机着舰直接力控制方法[J]. 电光与控制, 2020, 27(11): 1-5.
ZHU Y L, ZHEN Z Y, JI Y X, et al. Direct Lift Control for Auto-landing of Shipboard Aircraft[J]. Electronics Optics & Control, 2020, 27(11): 1-5 (in Chinese).
[5] 张志冰, 张秀林, 王家兴, 等. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报, 2021, 42(8): 142-157.
ZHANG Z B, ZHANG X L, WANG J X, et al. An lDLC landing control method of carrier-based aircraft based on control allocation of multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 142-157 (in Chinese).
[6] 魏治强. 基于直接升力的无人机着舰技术研究[D]. 南京: 南京航空航天大学, 2020: 1-19.
WEI Z Q. Research on Automatic Carrier Landing Tech-nology Based on Direct Lift Control for Fixed Wing UAV[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 1-19 (in Chinese).
[7] 罗飞, 张军红, 王博, 等. 基于直接升力与动态逆的舰尾流抑制方法[J]. 航空学报, 2021, 42(12): 193-208.
LUO F, ZHANG J H, WANG B, et al. Air wake sup-pression method based on direct lift and nonlinear dy-namic inversion control[J]. Acta Aeronautica et Astro-nautica Sinica, 2021, 42(12): 193-208 (in Chinese).
[8] LUO F, ZHANG J H, LYU P F, et al. Carrier-based aircraft precision landing using direct lift control based on incremental nonlinear dynamic inversion[J]. IEEE Ac-cess, 2022, 10: 55709-55725.
[9] 段卓毅, 赵乐天, 张军红, 等. 基于增量动态逆的着舰控制方法研究[J/OL]. 航空工程进展,(2024-06-05)[2024-09-11].http://kns.cnki.net/kcms/detail/61.1479.v.20240605.1057.004.html.
DUAN Z Y, ZHAO L T, ZHANG J H, et al. Study on landing control method based on incremental dynamic inverse. Advances in Aeronautical Science and Engineering,(2024-06-05)[2024-09-11].http://kns.cnki.net/kcms/detail/61.1479.v.20240605.1057.004.html.
[10] 宋立廷, 周思羽, 张杨, 等. 级联式预设性能动态逆解耦直接升力着舰控制[J]. 哈尔滨工业大学学报, 2023, 55(12): 42-53.
SONG L T, ZHOU S Y, ZHANG, Y, et al. Cascaded comprehensive direct lift control law based on preseribed
performance dynamic inversion for carrier landing[J]. Journal of Harbin Institute of Technology. 2023, 55(12): 42-53 (in Chinese).
[11] 朱玉莲. 舰载机“魔毯”着舰技术研究[D]. 南京: 南京航空航天大学, 2020: 1-23.
ZHU Y L. Research on Carrier-based Aircraft "Magic Carpet" Landing Technology[D]. Nanjing: Nanjing Uni-versity of Aeronautics and Astronautics, 2020: 1-23 (in Chinese).
[12] 梁耀. 基于直接升力的无人机着舰控制技术研究[D]. 南京: 南京航空航天大学, 2021: 1-6.
LIANG Y. The Research on UAV Landing Control Technology based on Direct Lift[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 1-6 (in Chinese).
[13] 江文强. 基于直接升力控制的自动着舰技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2022: 1-8.
JIANG W Q. Research on Automatic Carrier Landing Technology Based on Direct Lift Control[D]. Harbin: Harbin Engineering University, 2022: 1-8 (in Chinese).
[14] 吴启龙, 朱齐丹. 基于线性自抗扰控制的纵向舰载机直接升力全自动着舰控制[J]. 智能系统学报, 2024, 19(1): 142-152.
WU Q L, ZHU Q D. Direct lift fully-automatic landing control of longitudinal carrier-based aircraft on basis of
linear active disturbance rejection control[J]. CAAI transactions on intelligent systems, 2024, 19(1): 142-152 (in Chinese).
[15] 孙笑云, 江驹, 甄子洋, 等. 舰载飞机自适应模糊直接力着舰控制[J]. 西北工业大学学报, 2021, 39(2): 359-366.
SUN X Y, JIANG J, ZHEN Z Y, et al. Adaptive fuzzy direct lift control of aircraft carrier-based landing[J]. Journal of Northwestern Polytechnical University, 2021, 39(2): 359-366 (in Chinese).
[16] 柳仁地, 江驹, 张哲, 等. 基于强化学习的舰载机着舰直接升力控制技术[J/OL]. 北京航空航天大学学报,(2023-04-03)[2024-09-11]. https://doi.org/10.13700/j.bh.1001-5965.
LIU R D, JANG J, ZHANG Z, et al. Direct lift control technology of carrier aircraft landing based on reinforcement learning[J/OL]. Journal of Beijing University of Aeronautics and Astronautics,(2023-04-03)[2024-09-11].https://doi.org/10.13700/j.bh.1001-5965.
[17] 雷元龙, 谢鹏, 刘业华, 等. EP-DDPG引导的着舰控制系统[J/OL]. 控制理论与应用, (2024-09-06)[2024-09-22].http://kns.cnki.net/kcms/detail/44.1240.TP.20240906.1425.008.html.
LEI Y L, XIE P, LIU Y H, et al. EP-DDPG guided carrier landing control system[J/OL]. Control Theory & Applications, (2024-09-06)[2024-09-22].http://kns.cnki.net/kcms/detail/44.1240.TP.20240906.1425.008.html.
[18] ZHOU, D P, WANG, L X. Research on Direct Lift Car-rier-Based Unmanned Aerial Vehicle Landing Control Based on Performance Index Intelligent Optimiza-tion/Dynamic Optimal Allocation[J]. Drones, 2023, 7(7): 431.
[19] WU W H, SONG L T, ZHANG Y, et al. Nonlinear com-prehensive decoupling controller based on direct lift con-trol for carrier landing[J]. IEEE Access, 2022, 10: 113875-113887.
[20] GUAN Z Y, LIU H, ZHENG Z W, et al. Moving path following with integrated direct lift control for carrier landing[J]. Aerospace Science and Technology, 2022, 120: 1-15.
[21] 周鑫, 彭荣鲲, 袁锁中. 舰载机理想着舰点垂直运动的预估与补偿[J]. 航空学报, 2013, 34(07): 1663-1669.
ZHOU X, PENG R K, YUAN S Z. Prediction and Compensation for Vertical Motion of Ideal Touchdown Point in Carrier Landing[J]. Acta Aeronautica et Astro-nautica Sinica, 2013, 34(07): 1663-1669 (in Chinese).
[22] FU C, TIAN Y, PENG C, et al. Path tracking control for eight-rotor aircraft based on linear ADRC algo-rithm[C]//2016 IEEE 11th Conference on Industrial Elec-tronics and Applications. Piscataway, NJ: IEEE Press, 2016: 2147-2152.
[23] CHEN M, GE S S, HOW B V E. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities[J]. IEEE Transactions on Neural Networks, 2010, 21(5): 796-812.
[24] MENG Y, WANG W, HAN H. Flight Control Method Using Neural Network in Prediction for Suppressing Ship Airwake Impact in Carrier Landing[J]. IEEE Aero-space and Electronic Systems Magazine, 2023, 38(7): 20-32.
[25] 安帅斌. 高机动飞机气动参数在线辨识与自适应控制[D]. 大连: 大连理工大学, 2022: 22-41.
AN S B. Online Identification of Aerodynamic Parame-ters and Adaptive Attitude Control of High Maneuver Aircraft[D]. Dalian: Dalian University of Technology, 2022: 22-41 (in Chinese).
文章导航

/