基于Theodorsen理论的跨声速颤振非定常气动力建模

  • 刘永平 ,
  • 张朋 ,
  • 路波 ,
  • 余立 ,
  • 寇西平
展开
  • 1. 中国空气动力研究与发展中心高速所
    2. 中国空气动力研究与发展中心

收稿日期: 2024-10-23

  修回日期: 2025-02-20

  网络出版日期: 2025-02-21

基金资助

智强基金项目资助;四川省自然科学基金

Unsteady Aerodynamic Modeling for Transonic Flutter Based on Theodorsen's Theory

  • LIU Yong-Ping ,
  • ZHANG Peng ,
  • LU Bo ,
  • YU Li ,
  • KOU Xi-Ping
Expand

Received date: 2024-10-23

  Revised date: 2025-02-20

  Online published: 2025-02-21

摘要

提出了一种针对机翼俯仰和浮沉耦合颤振的跨声速非定常气动力建模方法,将经典的不可压Theodorsen理论扩展到跨声速非定常流。考虑跨声速流压缩效应和非定常下激波运动引起的升力线斜率和焦点变化,构造Theodorsen理论的跨声速修正函数,建立非定常气动力模型,以捕捉跨声速流中非定常气动力幅值和相位的变化。使用Isogai机翼算例模型, 对跨声速修正函数构建、修正函数和非定常气动力的特性、弹性轴的影响、颤振非线性特征等开展了研究。研究结果表明:修正函数能够捕捉跨声速流中翼面激波的振荡特性,非定常气动力的幅值减小和相位滞后;特定弹性轴下获取的修正函数参数值可以泛化到任意弹性轴状态;本文的非定常建模方法能够准确表征跨声速气动力的非线性特性,实现高效准确的跨声速颤振特性预测。

本文引用格式

刘永平 , 张朋 , 路波 , 余立 , 寇西平 . 基于Theodorsen理论的跨声速颤振非定常气动力建模[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31434

Abstract

A transonic unsteady aerodynamic modeling method for the coupled pitching and plunging flutter of aircraft wing is pro-posed. This method extends the classical incompressible Theodorsen theory to transonic unsteady flows. By considering the changes of lift-curve slope by compression effect in transonic flows, as well as the shifts of aerodynamic center due to un-steady shock wave movement, a transonic correction function for Theodorsen's theory is constructed, and an unsteady aero-dynamic model is established to capture the changes in the amplitude and phase of unsteady aerodynamic forces in transonic flow. Using the Isogai wing as a case study, research was conducted on the construction of the transonic correction function, the characteristics of the correction function and unsteady aerodynamic forces, the influence of the elastic axis, and the non-linear features of flutter. The results indicate that the correction function effectively captures the oscillatory behavior of shock waves on the wing surface in transonic flow, and the decrease in amplitude and phase lag of unsteady aerodynamic forces. The parameter values of correction function obtained from a specific elastic axis can be generalized to any elastic axis condition. The unsteady modeling method in this paper can accurately represent the nonlinear characteristics of transonic aerodynamic forces and achieve efficient and accurate prediction of transonic flutter characteristics.

参考文献

[1]MALLIK W, SCHETZ J A, KAPANIA R K.Rapid Tran-sonic Flutter Analysis for Aircraft Conceptual Design Applica-tions [J]. AIAA Journal. 2018, 56(6): 2389-2402.
[2] ALBANO E, RODDEN W.P. A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. AIAA Journal.. 1969, 7 (2), 279–285.
[3] THELEN A, LEIFSSON T, BERAN P.Aeroelastic Flutter Prediction using Multi-fidelity Modeling of the Aerodynamic Influence Coefficients[C]// AIAA Scitech 2019 Forum. Cali-fornia: AIAA, 2019:1-21.
[4] BENDIKSEN O O.Review of unsteady transonic aerody-namics: Theory and applications [J]. Progress in Aerospace Sciences. 2011, 47(2): 135-167.
[5] VIO G A, DIMITRIADIS G, COOPER J E, et al.Aeroe-lastic system identification using transonic CFD data for a wing/store configuration[J]. Aerospace Science and Technolo-gy. 2007, 11(2): 146-154.
[6] BENDIKSEN O O.Role of shock dynamics in transonic flutter. AIAA-92-2121-CP [R]. Reston, US: AIAA, 1992.
[7] ALONSO, J, JAMESON, A.Fully-implicit time-marching aeroelastic solutions. (32nd Aerospace Sciences Meeting and Exhibit) AIAA-94-0056[R]. Reston, US: AIAA, 1994.
[8] YANG, S., ZHANG, Z., LIU, F. et al. Time-domain aeroe-lastic simulation by a coupled Euler and integral boundary-layer method.( 22nd AIAA Applied Aerodynamic Conference) AIAA-2004-5377[R]. Reston, US: AIAA, 2004.
[9] THELEN A, LEIFSSON T, BERAN P.Aeroelastic Flutter Prediction Using Multifidelity Modeling of the Generalized Aerodynamic Influence Coefficients[J]. AIAA Journal. 2020, 58(11): 4764-4780.
[10] OPGENOORD, M J, DRELA, M., WILLCOX K. Phys-ics-Based Low-Order Model for Transonic Flutter Predic-tion[J]. AIAA Journal. 2018, 56(41): 1519-1531
[11] TIMME S, BADCOCK K.Transonic aeroelastic instabil-ity searches using sampling and aerodynamic model hierarchy [J]. AIAA Journal. 2011, 49 (6):1191–1201.
[12] THOMAS J P, DOWELL E H, HALL K C.Nonlinear Inviscid Aerodynamic Effects on Transonic Divergence, Flutter, and Limit Cycle Oscillations [J]. AIAA Journal. 2002, 40(4):638–646
[13] GU(··)NNER, H, THOMAS, D, DIMITRIADIS G, et al.Unsteady aerodynamic modeling methodology based on dy-namic mode interpolation for transonic flutter calculations[J]. Journal of fluids and structures. 2019, 84: 218-232.
[14] ISOGAI, K.On the transonic-dip mechanism of flutter of a sweptback wing [J]. AIAA Journal. 1979, 17 (7):793–795.
[15] LEE-RAUSCH, E M, BATINA, J T.Wing FlutterBound-ary Prediction Using Unsteady Euler Aerodynamic Method [J]. Journal of Aircraft. 1995, 32 (2):416–422.
[16] LEE-RAUSCH E M, BATINA, J T.Wing FlutterBound-ary Prediction Using Unsteady Navier–Stokes Equations [J]. Journal of Aircraft. 1996, 33 (6):1139–1147.
[17] DOWELL, E, UEDA, T.Flutter analysis using nonlinear aerodynamic forces [J]. Journal of Aircraft. 1984, 21(2):101–109.
[18] 贺顺.机翼跨音速非线性颤振研究[D]. 西安:西北工业大学, 2017.
[19]HE S.Study on wing nonlinear ?utter in transonic ?ow [D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chi-nese).
[20] HE S, YANG Z C, GU Y S.Transonic Limit Cycle Os-cillation Analysis Using Aerodynamic Describing Functions and Superposition Principle [J]. AIAA Journal. 2014, 52 (7):1393–1403.
[21] 张伟伟,叶正寅.基于CFD的气动力建模及其在气动弹性中的应用[J]. 力学进展. 2008(01): 77-86.
[22]ZHANG W W,YE Z Y.On unsteady aerodynamic modeling based on CFD technique and its application on aeroelastic analysis [J]. Advances in mechanics. 2008(01): 77-86(in Chi-nese).
[23] THEODORSEN T., General Theory of Aerodynamic Instability and the Mechanism of Flutter. NACA Rept. 496[R], 1935.
[24] H M O, AHMED M Y M, ZAKAIRA M Y.Investigating the Aerodynamic Loads and Frequency Response for a Pitch-ing NACA 0012 Airfoil [C] // 2018 AIAA Aerospace Sciences Meeting. Florida: AIAA, 2018:1-12.
[25] TAHA H, REZAEI A.Unsteady Viscous Lift Frequency Response Using The Triple Deck Theory[C] // 2018 AIAA Aerospace Sciences Meeting. Florida: AIAA, 2018:1-16.
[26] REZAEI A S, TAHA H E.Computational Study of Lift Frequency Responses of Pitching Airfoils at Low Reynolds Numbers[C] // 55th AIAA Aerospace Sciences Meeting. Texas: AIAA, 2017:1-13.
[27] TAHA H E, REZAEI A S.On the high-frequency re-sponse of unsteady lift and circulation: A dynamical systems perspective[J]. Journal of Fluids and Structures. 2020, 93:1-17.
[28] WROGHT J R, COOPER J E.Introduction to Aircraft Aeroelasticity and Loads: Second Edition [M]. Wiley, 2015.
[29] DAVIS, S.S.. NACA 64A010 (NASA Ames model) oscillatory pitching. AGARD Rep 702[R], 1982.
[30] JACOBSON K E, STANFORD B K, KIVIAHO J F, et al.Multiscale Mesh Adaptation for Transonic Aeroelastic Flut-ter Problems [C] // AIAA AVIATION 2021 FORUM. EVENT: AIAA, 2021:1-19.
文章导航

/