超声速凹腔燃烧室中液体煤油射流混合过程数值模拟研究

  • 李非 ,
  • 李凡 ,
  • 杨小龙 ,
  • 张锦成 ,
  • 李佩波 ,
  • 汪洪波 ,
  • 孙明波
展开
  • 1. 国防科技大学
    2. 国防科技大学空天科学学院

收稿日期: 2024-10-08

  修回日期: 2025-02-10

  网络出版日期: 2025-02-12

基金资助

国家自然科学基金;国家自然科学基金;湖南省研究生创新基金

Numerical simulation study on the mixing process of a liquid kerosene jet in a cavity-based supersonic combustor

  • LI Fei ,
  • LI Fan ,
  • YANG Xiao-Long ,
  • ZHANG Jin-Cheng ,
  • LI Pei-Bo ,
  • WANG Hong-Bo ,
  • SUN Ming-Bo
Expand

Received date: 2024-10-08

  Revised date: 2025-02-10

  Online published: 2025-02-12

摘要

液体煤油射流一般在凹腔的上游喷注,凹腔内部的燃料分布对后续点火、燃烧过程至关重要,因此喷雾向凹腔内输运的这一混合过程一直以来都备受关注。本文基于欧拉-拉格朗日框架下的两相大涡模拟方法,在来流马赫数2.0,总压1.0 MPa,总温900 K条件下对凹腔燃烧室中液体煤油射流的混合过程进行数值研究。考虑常温煤油的蒸发,关注液滴在燃烧室内运动过程中的与壁面的碰撞,重点研究了喷雾从燃烧室下壁面附近卷吸进入凹腔的过程。液滴从喷孔喷出后,在来流作用下向下游扩散,大多数液滴直接跨过凹腔,在凹腔上方主流区域向下游输运,少量液滴(约5.2%)被卷吸进入凹腔。液滴进入凹腔主要包括两种路径,一种是在凹腔前缘通过凹腔剪切层进入,另外一种是从凹腔后缘经回流区进入。在这两种路径上,液滴分别与凹腔上游的壁面以及凹腔后缘碰撞产生飞溅子液滴,飞溅子液滴之后在凹腔中广泛分布。

本文引用格式

李非 , 李凡 , 杨小龙 , 张锦成 , 李佩波 , 汪洪波 , 孙明波 . 超声速凹腔燃烧室中液体煤油射流混合过程数值模拟研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31337

Abstract

The liquid kerosene jet is generally injected upstream of the cavity, and the fuel distribution inside the cavity is critical to the subsequent ignition and combustion process, so the transport process of spray into the cavity has always been a concern. Based on the two-phase Large Eddy Simulation method under the Euler-Lagrangian framework, this paper nu-merically studies the mixing process of liquid kerosene jet a cavity-based supersonic combustor The incoming flow had a total pressure of 1.0 MPa, a total temperature of 900 K, and an inlet Mach number of 2.0. Considering the evaporation of kerosene at room temperature and the collision of droplets with the wall in the combustor, this paper focuses on the pro-cess of spray entrainment from the lower wall of the combustion chamber into the cavity. After the liquid droplets are in-jected, they diffuse downstream under the action of incoming flow. Most of the liquid droplets directly cross the cavity and transport downstream in the mainstream area above the cavity, with a small amount (about 5.2%)of liquid droplets being entrained into the cavity. The entry of droplets into the cavity mainly includes two paths: one is through the shear layer at the front edge of the cavity, and the other is through the rear edge of the cavity. On these two paths, droplets collide with the wall up-stream of the cavity and the trailing edge of the cavity to generate splashed droplets, which are then widely distributed in the cavity.

参考文献

[1] ABDULRAHMAN G A Q, QASEM N A A, IMTEYAZ B, et al. A review of aircraft subsonic and supersonic combustors [J]. Aerospace Science and Technology, 2023, 132: 108067. [2] 唐浩然, 沈赤兵, 杜兆波,等. 超燃冲压发动机燃料混合增强技术研究进展 [J]. 航空兵器, 2023, 30(1): 80-94. TANG H R, SHEN C B, DU Z B, et al. Research progress of fuel mixing enhancement technology for scramjet engine [J]. Aviation Weapons, 2023, 30 (1): 80-94(in Chinese). [3] 刘小勇, 王明福, 刘建文, 等. 超燃冲压发动机研究回顾与展望 [J]. 航空学报, 2024, 45(5): 529878. LIU X Y,WANG M F,LIU J W,et al. Review and prospect of research on scramjet[J]. Acta Aeronautica et Astronautica Sinica,2024,45(5):529878 (in Chinese). [4] HUANG W. Effect of jet-to-crossflow pressure ratio arrangement on turbulent mixing in a flow path with square staged injectors [J]. Fuel, 2015, 144: 164-170. [5] 刘朝阳. 超声速气流中壁面燃料射流混合、点火及稳燃机制研究 [D]. 长沙: 国防科技大学, 2019. LIU C Y. Research on the mixing, ignition, and stable combustion mechanism of fuel jets on wall surfaces in supersonic gas flows [D]. Changsha: National University of Defense Technology, 2019 (in Chinese). [6] 费立森, 徐胜利, 黄生洪, 等. 有/无凹槽通道内煤油超燃雾化的测量研究 [J]. 推进技术, 2009, 30(1): 18-23. FEI L S, XU S L, HUANG S H, et al. Measurement study of kerosene super combustion atomization in grooved and non-grooved channels [J]. Propulsion Technology, 2009, (1): 18-23 (in Chinese). [7] 费立森. 煤油在冷态超声速气流中喷射和雾化现象的初步研究 [D]. 合肥: 中国科学技术大学, 2007. FEI L S. Preliminary study on the injection and atomization of kerosene in cold supersonic gas flow [D]. HeFei: University of Chinese Academy of Sciences, 2007 (in Chinese). [8] 徐宝剑,刘维来,徐胜利,等. 基于PLIF/Mie图像测量煤油超雾化场数值特性 [J]. 推进技术, 2018, (4): 905-911. XU B J, LIU W L, XU S L, et al. Measurement of numerical characteristics of kerosene super atomization field based on PLIF/Mie imaging [J]. Propulsion Technology, 2018, (4): 905-911 (in Chinese). [9] 徐宝剑. 基于Plif/Mie超声速煤油雾化场射流特性的研究 [D]. 合肥: 中国科学技术大学, 2017. XU B J. Study on the jet characteristics of supersonic kerosene atomization field based on PLIF/Mie [D]. HeFei: University of Chinese Academy of Sciences, 2017 (in Chinese). [10] PAN Y, DAI J F, BAO H. Effect of scramjet combustor configuration on the distribution of transverse injection kerosene [J]. Journal of Mechanical Science and Technology, 2014, 28(12): 4997-5002. [11] LI F, YU X, TONG Y, et al. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8[J]. Aerospace Science and Technology, 2013, 28(1): 72-78. [12] 李西鹏. 超声速气流中煤油喷注混合及点火过程研究 [D]. 长沙: 国防科技大学, 2018. LI X P. Research on the mixing and ignition process of kerosene injection in supersonic gas flow [D]. Changsha: National University of Defense Technology, 2018 (in Chinese). [13] LI X, LIU W, PAN Y, et al. Characterization of kerosene distribution around the ignition cavity in a scramjet combustor [J]. Acta Astronautica, 2017, 134: 11-16. [14] LI X, LIU W, YANG L, et al. Experimental investigation on fuel distribution in a scramjet combustor with dual cavity [J]. Journal of Propulsion and Power, 2018, 34(2): 552-556. [15] YANG L, PENG J, LI X, et al. Planar laser-induced fluorescence imaging of kerosene injection in supersonic flow [J]. Journal of Visualization, 2019, 22 (4): 751-760. [16] 李晨阳. 超声速来流凹腔燃烧室中液体射流喷雾特性研究 [D]. 长沙: 国防科技大学, 2021. LI C Y. Study on spray characteristics of liquid jets in supersonic airflow in cavity-based combustor [D]. Changsha: National University of Defense Technology, 2021 (in Chinese). [17] LI P, WANG H, SUN M, et al. Numerical study on the mixing and evaporation process of a liquid kerosene jet in a scramjet combustor [J]. Aerospace Science and Technology, 2021, 119. [18] 杨恺. 超声速气流中气化煤油点火及燃烧特性研究 [D]. 长沙: 国防科技大学, 2021. YANG K. Study on the ignition and combustion characteristics of vaporized kerosene in supersonic gas flow [D]. Changsha: National University of Defense Technology, 2021 (in Chinese). [19] ZHOU Y, CAI Z, LI Q, et al. Characteristics of penetration and distribution of a liquid jet in a divergent cavity-based combustor [J]. Chinese Journal of Aeronautics, 2023. [20] Ombrello T, Okhovat N S, Rhoby M R. Measurements of scramjet fueling conditions [C]. 2018 AIAA Aerospace Sciences Meeting. Kissimmee, Florida, 2018. [21] 汪洪波. 超声速气流中凹腔稳定的射流燃烧模式及振荡机制研究 [D]. 长沙: 国防科学技术大学, 2012. WANG H B. Research on the stable jet combustion mode and oscillation mechanism in supersonic gas flow [D]. Changsha: National University of Defense Technology, 2012 (in Chinese). [22] WANG H B, WANG Z G, SUN M B, et al. Numerical study on supersonic mixing and combustion with hydrogen injection upstream of a cavity flameholder [J]. Heat Mass Transfer, 2014, 50(2): 211-223. [23] LIU C, ZHAO Y, WANG Z, et al. Dynamics and mixing mechanism of transverse jet injection into a supersonic combustor with cavity flameholder [J]. Acta Astronautica, 2017, 136: 90-100. [24] LIU C, ZHANG J, LI X, et al. Lift-off behaviors of the partially-premixed jet flame in a supersonic vitiated coflow [J]. Aerospace Science and Technology, 2023, 132: 108021. [25] MILLER R S, HARSTAD K, BELLAN J. Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations [J]. International Journal of Multiphase Flow, 1998, 24(6): 1025-1055. [26] 李佩波. 超声速气流中横向喷雾的混合及燃烧过程数值模拟 [D]. 长沙: 国防科技大学, 2019. LI P B. Numerical simulation of the mixing and combustion process of transverse jets in supersonic gas flow [D]. Changsha: National University of Defense Technology, 2019 (in Chinese). [27] LI F, WANG Z, LI P, et al. The spray distribution of a liquid jet in supersonic crossflow in the near-wall region [J]. Physics of Fluids, 2022, 34(6): 063301. [28] LIN K-C, KENNEDY P J, JACKSON T A. Structures of water jets in a Mach 1.94 supersonic crossflow [Z]. 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada. 2004: AIAA 2004-971.10.2514/6.2004-971 [29] LIU J, WANG L, ZHANG J, et al. Experimental and numerical simulation of atomization of liquid jet in supersonic crossflow [J]. 1 National University of Defense Technology, College of Aerospace Science and Engineering, Changsha, 410073, China, 58294, 2008, 23(4): 724-729.
文章导航

/