飞行器数字孪生技术专刊

超声速凹腔燃烧室中液体煤油射流混合过程数值模拟

  • 李非 ,
  • 李凡 ,
  • 杨小龙 ,
  • 张锦成 ,
  • 李佩波 ,
  • 汪洪波 ,
  • 孙明波
展开
  • 国防科技大学 空天科学学院,长沙 410073
E-mail: lifan@nudt.edu.cn

收稿日期: 2024-10-08

  修回日期: 2024-11-21

  录用日期: 2025-01-27

  网络出版日期: 2025-02-12

基金资助

国家自然科学基金(11925207);国家自然科学基金(12102472);湖南省研究生创新基金(CX20220028)

Numerical simulation on mixing process of a liquid kerosene jet in a cavity-based supersonic combustor

  • Fei LI ,
  • Fan LI ,
  • Xiaolong YANG ,
  • Jincheng ZHANG ,
  • Peibo LI ,
  • Hongbo WANG ,
  • Mingbo SUN
Expand
  • College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
E-mail: lifan@nudt.edu.cn

Received date: 2024-10-08

  Revised date: 2024-11-21

  Accepted date: 2025-01-27

  Online published: 2025-02-12

Supported by

National Natural Science Foundation of China(11925207);Hunan Provincial Innovation Foundation for Postgraduate(CX20220028)

摘要

液体煤油射流一般在凹腔的上游喷注,凹腔内部的燃料分布对后续点火、燃烧过程至关重要,因此喷雾向凹腔内输运的这一混合过程一直以来都备受关注。本文基于欧拉-拉格朗日框架下的两相大涡模拟方法,在来流马赫数2.0、总压1.0 MPa、总温900 K条件下对凹腔燃烧室中液体煤油射流的混合过程进行数值研究。考虑常温煤油的蒸发,关注液滴在燃烧室内运动过程中的与壁面的碰撞,重点研究了喷雾从燃烧室下壁面附近卷吸进入凹腔的过程。液滴从喷孔喷出后,在来流作用下向下游扩散,大多数液滴直接跨过凹腔,在凹腔上方主流区域向下游输运,少量(约5.2%)液滴被卷吸进入凹腔。液滴进入凹腔主要包括2种路径,一种是在凹腔前缘通过凹腔剪切层进入,另外一种是从凹腔后缘经回流区进入。在这2种路径上,液滴分别与凹腔上游的壁面以及凹腔后缘碰撞产生飞溅子液滴,飞溅子液滴之后在凹腔中广泛分布。

本文引用格式

李非 , 李凡 , 杨小龙 , 张锦成 , 李佩波 , 汪洪波 , 孙明波 . 超声速凹腔燃烧室中液体煤油射流混合过程数值模拟[J]. 航空学报, 2025 , 46(19) : 531337 -531337 . DOI: 10.7527/S1000-6893.2025.31337

Abstract

The liquid kerosene jet is generally injected upstream of the cavity, and the fuel distribution inside the cavity is critical to the subsequent ignition and combustion process, so the transport process of spray into the cavity has always been a concern. Based on the two-phase Large Eddy Simulation method under the Euler-Lagrangian framework, this paper numerically studies the mixing process of liquid kerosene jet in a cavity-based supersonic combustor. The incoming flow had a total pressure of 1.0 MPa, a total temperature of 900 K, and an inlet Mach number of 2.0. Considering the evaporation of kerosene at room temperature and the collision of droplets with the wall in the combustor, this paper focuses on the process of spray entrainment from the lower wall of the combustion chamber into the cavity. After the liquid droplets are injected, they diffuse downstream under the action of the incoming flow. Most of the liquid droplets directly cross the cavity and transport downstream in the mainstream area above the cavity, with a small amount (about 5.2%) of liquid droplets being entrained into the cavity. The entry of droplets into the cavity mainly includes two paths: one is through the shear layer at the front edge of the cavity, and the other is through the rear edge of the cavity. On these two paths, droplets collide with the wall upstream of the cavity and the trailing edge of the cavity to generate splashed droplets, which are then widely distributed in the cavity.

参考文献

[1] ABDULRAHMAN G A Q, QASEM N A A, IMTEYAZ B, et al. A review of aircraft subsonic and supersonic combustors[J]. Aerospace Science and Technology2023132: 108067.
[2] 唐浩然, 沈赤兵, 杜兆波, 等. 超燃冲压发动机燃料混合增强技术研究进展[J]. 航空兵器202330(1): 80-94.
  TANG H R, SHEN C B, DU Z B, et al. Research progress on fuel mixing enhancement technology of scramjet[J]. Aero Weaponry202330(1): 80-94.
[3] 刘小勇, 王明福, 刘建文, 等. 超燃冲压发动机研究回顾与展望[J]. 航空学报202445(5): 529878.
  LIU X Y, WANG M F, LIU J W, et al. Review and prospect of research on scramjet[J]. Acta Aeronautica et Astronautica Sinica202445(5): 529878..
[4] HUANG W. Effect of jet-to-crossflow pressure ratio arrangement on turbulent mixing in a flowpath with square staged injectors[J]. Fuel2015144: 164-170.
[5] 刘朝阳. 超声速气流中壁面燃料射流混合、点火及稳燃机制研究[D]. 长沙: 国防科技大学, 2019.
  LIU C Y. Research on the mixing, ignition, and stable combustion mechanism of fuel jets on wall surfaces in supersonic gas flows[D]. Changsha: National University of Defense Technology, 2019 (in Chinese).
[6] 费立森, 徐胜利, 黄生洪, 等. 有/无凹槽通道内煤油超燃雾化的测量研究[J]. 推进技术200930(1): 18-23.
  FEI L S, XU S L, HUANG S H, et al. Measurements on kerosene atomization in supersonic flow in duct with and without cavity[J]. Journal of Propulsion Technology200930(1): 18-23..
[7] 费立森. 煤油在冷态超声速气流中喷射和雾化现象的初步研究[D]. 合肥: 中国科学技术大学, 2007.
  FEI L S. Preliminary study on spray and atomization of kerosene in cold supersonic airflow[D]. Hefei: University of Science and Technology of China, 2007 (in Chinese).
[8] 徐宝剑, 刘维来, 徐胜利, 等. 基于PLIF/Mie图像测量煤油超雾化场数值特性[J]. 推进技术201839(4): 905-911.
  XU B J, LIU W L, XU S L, et al. Measurement of numerical characteristics of kerosene atomization field based on PLIF/Mie image measurement method[J]. Journal of Propulsion Technology201839(4): 905-911.
[9] 徐宝剑. 基于Plif/Mie超声速煤油雾化场射流特性的研究[D]. 合肥: 中国科学技术大学, 2017.
  XU B J. Study on jet characteristics of supersonic kerosene atomization field based on Plif/Mie[D]. Hefei: University of Science and Technology of China, 2017 (in Chinese).
[10] PAN Y, DAI J F, BAO H. Effect of scramjet combustor configuration on the distribution of transverse injection kerosene[J]. Journal of Mechanical Science and Technology201428(12): 4997-5002.
[11] LI F, YU X L, TONG Y G, et al. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8[J]. Aerospace Science and Technology201328(1): 72-78.
[12] 李西鹏. 超声速气流中煤油喷注混合及点火过程研究[D]. 长沙: 国防科技大学, 2018.
  LI X P. Research on the mixing and ignition process of kerosene injection in supersonic gas flow[D]. Changsha: National University of Defense Technology, 2018 (in Chinese).
[13] LI X P, LIU W D, PAN Y, et al. Characterization of kerosene distribution around the ignition cavity in a scramjet combustor[J]. Acta Astronautica2017134: 11-16.
[14] LI X P, LIU W D, YANG L C, et al. Experimental investigation on fuel distribution in a scramjet combustor with dual cavity[J]. Journal of Propulsion and Power201834(2): 552-556.
[15] YANG L C, PENG J B, LI X H, et al. Planar laser-induced fluorescence imaging of kerosene injection in supersonic flow[J]. Journal of Visualization201922(4): 751-760.
[16] 李晨阳. 超声速来流凹腔燃烧室中液体射流喷雾特性研究[D]. 长沙: 国防科技大学, 2021.
  LI C Y. Study on spray characteristics of liquid jets in supersonic airflow in cavity-based combustor[D]. Changsha: National University of Defense Technology, 2021 (in Chinese).
[17] LI P B, WANG H B, SUN M B, et al. Numerical study on the mixing and evaporation process of a liquid kerosene jet in a scramjet combustor[J]. Aerospace Science and Technology2021119: 107095.
[18] 杨恺. 超声速气流中气化煤油点火及燃烧特性研究[D]. 长沙: 国防科技大学, 2021.
  YANG K. Study on the ignition and combustion characteristics of vaporized kerosene in supersonic gas flow [D]. Changsha: National University of Defense Technology, 2021 (in Chinese).
[19] ZHOU Y Z, CAI Z, LI Q L, et al. Characteristics of penetration and distribution of a liquid jet in a divergent cavity-based combustor[J]. Chinese Journal of Aeronautics202336(12): 139-150.
[20] OMBRELLO T, OKHOVAT N S, RHOBY M R. Measurements of scramjet fueling conditions: AIAA-2018-1360[R]. Reston: AIAA,2018.
[21] 汪洪波. 超声速气流中凹腔稳定的射流燃烧模式及振荡机制研究 [D]. 长沙: 国防科技大学, 2012.
  WANG H B. Research on the stable jet combustion mode and oscillation mechanism in supersonic gas flow [D]. Changsha: National University of Defense Technology, 2012 (in Chinese).
[22] WANG H B, WANG Z G, SUN M B, et al. Numerical study on supersonic mixing and combustion with hydrogen injection upstream of a cavity flameholder[J]. Heat and Mass Transfer201450(2): 211-223.
[23] LIU C Y, ZHAO Y H, WANG Z G, et al. Dynamics and mixing mechanism of transverse jet injection into a supersonic combustor with cavity flameholder[J]. Acta Astronautica2017136: 90-100.
[24] LIU C Y, ZHANG J C, LI X, et al. Lift-off behaviors of the partially-premixed jet flame in a supersonic vitiated coflow[J]. Aerospace Science and Technology2023132: 108021.
[25] MILLER R S, HARSTAD K, BELLAN J. Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations[J]. International Journal of Multiphase Flow199824(6): 1025-1055.
[26] 李佩波. 超声速气流中横向喷雾的混合及燃烧过程数值模拟[D]. 长沙: 国防科技大学, 2019.
  LI P B. Numerical simulation of the mixing and combustion process of transverse jets in supersonic gas flow[D]. Changsha: National University of Defense Technology, 2019 (in Chinese).
[27] LI F, WANG Z G, LI P B, et al. The spray distribution of a liquid jet in supersonic crossflow in the near-wall region[J]. Physics of Fluids202234(6): 063301.
[28] MUNDO C, SOMMERFELD M, TROPEA C. Droplet-wall collisions: Experimental studies of the deformation and breakup process[J]. International Journal of Multiphase Flow199521(2): 151-173.
[29] YARIN A L, WEISS D A. Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity[J]. Journal of Fluid Mechanics1995283: 141-173.
[30] LIN K C, KENNEDY P, JACKSON T. Structures of water jets in a Mach 1.94 supersonic crossflow:AIAA-2004-971[R]. Reston: AIAA, 2004.
[31] LIU J, WANG L, ZHANG J, et al. Experimental and numerical simulation of atomization of liquid jet in supersonic crossflow[J]. Journal of Aerospace Power200823 (4): 724-729.
文章导航

/