流体力学与飞行力学

一种适用于流固耦合模拟的高精度气动载荷传递方法

  • 杜中宇 ,
  • 杜鹏程 ,
  • 宁方飞
展开
  • 北京航空航天大学 航空发动机研究院,北京 102206

收稿日期: 2024-10-21

  修回日期: 2024-11-11

  录用日期: 2025-01-10

  网络出版日期: 2025-02-10

基金资助

国家科技重大专项(J2022-Ⅳ-0010-0024,J2022-? Ⅱ-0001-0004)

A high-precision aerodynamic load transfer method for fluid-solid coupling simulation

  • Zhongyu DU ,
  • Pengcheng DU ,
  • Fangfei NING
Expand
  • Research Institute of Aero-Engine,Beihang University,Beijing 102206,China

Received date: 2024-10-21

  Revised date: 2024-11-11

  Accepted date: 2025-01-10

  Online published: 2025-02-10

Supported by

National Science and Technology Major Project (J2022-Ⅳ-0010-0024, J2022-Ⅱ-0001-0004)

摘要

在基于分区求解的流固耦合数值仿真中,流体和固体求解器使用独立网格进行计算,因而在耦合界面上网格通常是不匹配的。气动力等物理量需要在界面处进行数据传递,其守恒性及准确性严重影响着流固耦合求解的精度。为减少气动力传递的误差,提出了一种基于局部曲面降维和精确单元积分的数据传递方法。在该方法中,首先基于固体网格构建广义二维坐标系,然后投影流体网格,计算相交面积来获得流体单元对固体节点力的贡献。数值算例表明该方法能够实现各种类型的非匹配网格之间精确且高效的数据传递。相比于传统方法,该方法能够保证力的完全守恒,实现接近零误差的气动力传递,且气动力分布更为光滑,力矩的误差可降低一个量级以上。最后,通过Rotor67转子、STCF4标准涡轮和Hirenasd机翼的流固耦合数值模拟对比了不同数据传递方法对流固耦合仿真结果的影响,计算结果表明所提出的界面数据传递方法对于固体变形和气动阻尼的计算更为准确。

本文引用格式

杜中宇 , 杜鹏程 , 宁方飞 . 一种适用于流固耦合模拟的高精度气动载荷传递方法[J]. 航空学报, 2025 , 46(12) : 131425 -131425 . DOI: 10.7527/S1000-6893.2025.31425

Abstract

In numerical simulations of fluid-solid coupling based on partitioned method, the fluid and solid solvers utilize independent grids for computations, so the grids are typically non-matching at the coupling interface. Physical quantities such as aerodynamic forces need to be transferred at the interface, and their conservation is essential to the accuracy of the simulation solutions. To reduce the error of aerodynamic force transfer, this paper proposes a data transfer method based on local surface degradation and accurate cell integration. In this method, a generalized two-dimensional coordinate system is initially constructed based on the solid mesh. Subsequently, the fluid mesh is projected, and the intersection area is calculated to determine the contribution of the fluid cells to the solid nodal force. The method has been demonstrated to be effective in achieving accurate and efficient data transfer between non-matching meshes of varying types. Compared to the traditional method, the proposed method can essentially ensure the comprehensive conservation of force, facilitate near-zero error aerodynamic force transfer, and result in a smoother aerodynamic force distribution. Additionally, the error of the momentum can be reduced by more than one order of magnitude. Finally, the influence of different data transfer methods on the fluid-solid coupling results are evaluated through the simulations of Rotor67, STCF4 standard turbine and Hirenasd wing which indicate that the interface data transfer approach proposed in this paper is more precise in calculations of solid deformation and aerodynamic damping.

参考文献

[1] 宋兆泓. 航空发动机典型故障分析[M]. 北京: 北京航空航天大学出版社, 1993: 59-60.
  SONG Z H. Typical fault analysis of aero-engine[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 1993: 59-60 (in Chinese).
[2] SAIZ G. Turbomachinery aeroelasticity using a time-linearised multi blade-row approach[D]. London: University of London, 2008: 28.
[3] 李其汉, 王延荣, 王建军. 航空发动机叶片高循环疲劳失效研究[J]. 航空发动机200329(4): 16-18, 41.
  LI Q H, WANG Y R, WANG J J. Investigation of high cycle fatigue failures for the aero engine blades[J]. Aeroengine200329(4): 16-18, 41 (in Chinese).
[4] ZHANG Z J, ZINGG D W. Efficient monolithic solution algorithm for high-fidelity aerostructural analysis and optimization[J]. AIAA Journal201756(3): 1251-1265.
[5] BLOM F J. A monolithical fluid-structure interaction algorithm applied to the piston problem[J]. Computer Methods in Applied Mechanics and Engineering1998167(3-4): 369-391.
[6] 邢景棠, 周盛, 崔尔杰. 流固耦合力学概述[J]. 力学进展199727(1): 19-38.
  XING J T, ZHOU S, CUI E J. A survey on the fluid solid interaction mechanics[J]. Advances in Mechanics199727(1): 19-38 (in Chinese).
[7] PIPERNO S, FARHAT C. Design of efficient partitioned procedures for the transient solution of aeroelastic problems[J]. Revue Européenne Des éléments Finis20009(6-7): 655-680.
[8] 徐可宁, 王延荣. 压气机转子叶片的气动弹性数值模拟[J]. 航空动力学报201025(10): 2206-2210.
  XU K N, WANG Y R. Numerical simulation of aeroelastic response in compressor rotor blades[J]. Journal of Aerospace Power201025(10): 2206-2210 (in Chinese).
[9] 陶海亮, 朱阳历, 郭宝亭, 等. 压气机叶片流固耦合数值计算[J]. 航空动力学报201227(5): 1054-1060.
  TAO H L, ZHU Y L, GUO B T, et al. Numerical simulation of aeroelastic response in compressor based on fluid-structure coupling[J]. Journal of Aerospace Power201227(5): 1054-1060 (in Chinese).
[10] BENDIKSEN O O. Modern developments in computational aeroelasticity[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2004218(3): 157-177.
[11] FARHAT C, LESOINNE M. On the accuracy, stability, and performance of the solution of three-dimensional nonlinear transient aeroelastic problems by partitioned procedures[C]∥37th Structure, Structural Dynamics and Materials Conference. Reston: AIAA, 1996.
[12] FARHAT C, LESOINNE M, MAMAN N. Mixed explicit/implicit time integration of coupled aeroelastic problems: Three-field formulation, geometric conservation and distributed solution[J]. International Journal for Numerical Methods in Fluids199521(10): 807-835.
[13] FARHAT C, RALLU A, WANG K, et al. Robust and provably second-order explicit-explicit and implicit-explicit staggered time-integrators for highly non-linear compressible fluid-structure interaction problems[J]. International Journal for Numerical Methods in Engineering201084(1): 73-107.
[14] GEUZAINE P, GRANDMONT C, FARHAT C. Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations[J]. Journal of Computational Physics2003191(1): 206-227.
[15] GERBEAU J F, VIDRASCU M. A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows[J]. ESAIM: Mathematical Modelling and Numerical Analysis37(4): 631-647.
[16] VAN BRUMMELEN E H, MICHLER C, DE BORST R. Interface-GMRES(R) acceleration of subiteration for fluid-structure-interaction problems: Report DACS-05-001[R]. Delft: Aerospace Materials & Manufacturing, 2005.
[17] KüTTLER U, WALL W A. Fixed-point fluid-structure interaction solvers with dynamic relaxation[J]. Computational Mechanics200843(1): 61-72.
[18] FARHAT C, LESOINNE M, LE TALLEC P. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity[J]. Computer Methods in Applied Mechanics and Engineering1998157(1-2): 95-114.
[19] SCHUSTER A, REIMER L, NEUMANN J. A mesh-free parallel moving least-squares-based interpolation method for the application in aeroelastic simulations with the flow simulator[M]∥New Results in Numerical and Experimental Fluid Mechanics X. Cham: Springer International Publishing, 2016: 573-583.
[20] DE BOER A, VAN ZUIJLEN A H, BIJL H. Review of coupling methods for non-matching meshes?[J]. Computer Methods in Applied Mechanics and Engineering2007196(8): 1515-1525.
[21] 安效民, 徐敏, 曾宪昂, 等. 计算气动弹性力学中的界面映射方法研究[J]. 计算力学学报200825(6): 887-892.
  AN X M, XU M, ZENG X A, et al. A new interface mapping method for aeroelasticity[J]. Chinese Journal of Computational Mechanics200825(6): 887-892 (in Chinese).
[22] HARDER R L, DESMARAIS R N. Interpolation using surface splines[J]. Journal of Aircraft19729(2): 189-191.
[23] APPA K. Finite-surface spline[J]. Journal of Aircraft198926(5): 495-496.
[24] JEAN D. Splines minimizing rotation-invariant semi-norms in Sobolev spaces[C]∥Constructive Theory of Functions of Several Variables. Berlin, Heidelberg: Springer Berlin Heidelberg, 1977: 85-100.
[25] HARDY R L. Multiquadric equations of topography and other irregular surfaces[J]. Journal of Geophysical Research197176(8): 1905-1915.
[26] 李维, 李敏, 皮懋宁. 流固耦合响应中插值方法的研究[C]∥全国振动工程及应用学术会议. 2006.
  LI W, LI M, PI M N. Research on interpolation methods in fluid-structure coupling response[C]∥National Academic Conference on Vibration Engineering and Applications. 2006 (in Chinese).
[27] SMITH M J, CESNIK C E S, HODGES D H. Evaluation of some data transfer algorithms for noncontiguous meshes[J]. Journal of Aerospace Engineering200013(2): 52-58.
[28] BECKERT A, WENDLAND H. Multivariate interpolation for fluid-structure-interaction problems using radial basis functions[J]. Aerospace Science and Technology20015(2): 125-134.
[29] BUHMANN M D, DE MARCHI S, PERRACCHIONE E. Analysis of a new class of rational RBF expansions[J]. IMA Journal of Numerical Analysis202040(3): 1972-1993.
[30] RENDALL T C S, ALLEN C B. Unified fluid-structure interpolation and mesh motion using radial basis functions[J]. International Journal for Numerical Methods in Engineering200874(10): 1519-1559.
[31] GOURA G S L, BADCOCK K J, WOODGATE M A, et al. A data exchange method for fluid-structure interaction problems[J]. The Aeronautical Journal2001105(1046): 215-221.
[32] FARRELL P E, PIGGOTT M D, PAIN C C, et al. Conservative interpolation between unstructured meshes via supermesh construction[J]. Computer Methods in Applied Mechanics and Engineering2009198(33-36): 2632-2642.
[33] 徐春光, 董海波, 刘君. 基于单元相交的混合网格精确守恒插值方法[J]. 爆炸与冲击201636(3): 305-312.
  XU C G, DONG H B, LIU J. An accurate conservative interpolation method for the mixed grid based on the intersection of grid cells[J]. Explosion and Shock Waves201636(3): 305-312 (in Chinese).
[34] JIAO X M, HEATH M T. Common-refinement-based data transfer between non-matching meshes in multiphysics simulations[J]. International Journal for Numerical Methods in Engineering200461(14): 2402-2427.
[35] JIAO X M, HEATH M T. Overlaying surface meshes, part i: Algorithms[J]. International Journal of Computational Geometry & Applications200414(6): 379-402.
[36] SUTHERLAND I E, HODGMAN G W. Reentrant polygon clipping[J]. Communications of the ACM197417(1): 32-42.
[37] STRAZISAR A J, WOOD J R, HATHAWAY M D, et al. Laser anemometer measurements in a transonic axial-flow fan rotor: NASA-TP-2879[R]. Washington, D.C.: NASA, 1989.
[38] BOLCS A, FRANSSON T H. Aeroelasticity in turbomachines-comparison of theoretical and experimental cascade results[C]∥Communication du Laboratoire de Thermique Appliquée et de Turbomachines N°13 l’Ecole Polytechnique Fédérale de Lausanne. 1986.
[39] RITTER M. Static and forced motion aeroelastic simulations of the HIRENASD wind tunnel model[C]∥53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012.
[40] CHWALOWSKI P, FLORANCE J P, HEEG J, et al. Preliminary computational analysis of the (HIRENASD) configuration in preparation for the aeroelastic prediction workshop[C]∥International Forum on Aeroelasticity and Structural Dynamics. 2011: 108.
文章导航

/