适用于飞行力学分析的旋翼涡环状态入流模型

  • 文镜涵 ,
  • 吉洪蕾 ,
  • 邓皓轩 ,
  • 王畅
展开
  • 1. 重庆大学
    2. 中国空气动力研究与发展中心

收稿日期: 2024-10-12

  修回日期: 2025-02-05

  网络出版日期: 2025-02-10

基金资助

中国空气动力研究与发展中心 旋翼空气动力学重点实验室研究开放课题资助;重庆市自然科学基金;国家自然科学基金;直升机动力学全国重点实验室基金

Rotor vortex ring state inflow model suitable for flight mechanics analysis

  • WEN Jing-Han ,
  • JI Hong-Lei ,
  • DENG Hao-Xuan ,
  • WANG Chang
Expand

Received date: 2024-10-12

  Revised date: 2025-02-05

  Online published: 2025-02-10

摘要

面向直升机特情仿真的应用需求,建立适于飞行力学分析的旋翼涡环状态入流模型。基于旋翼涡环状态直升机垂向运动阻尼的转折关系,联立桨尖涡运动方程和修正旋翼动量理论方程求解旋翼涡环状态临界阻尼边界,获得旋翼进入和改出涡环状态的爬升率和旋翼诱导速度,采用三次样条函数建立旋翼涡环状态诱导速度模型,并从涡环状态集中涡量的演化关系推导旋翼涡环状态诱导速度动态延迟时间常数,形成统一的旋翼涡环状态临界阻尼边界与动态入流模型。在此基础上,建立旋翼气动载荷模型和直升机涡环状态的飞行动力学模型,综合采用风洞和飞行试验数据验证模型。结果表明:本文模型能够合理准确地预测旋翼涡环状态临界阻尼边界及旋翼诱导速度随下降率和前飞速度的变化,与旋翼气动载荷模型结合能够准确预测旋翼拉力和扭矩系数随下降率的变化趋势;与飞行试验数据的对比表明,本文模型准确模拟了旋翼涡环状态的直升机垂向阻尼动态特性,适于飞行力学分析应用。

本文引用格式

文镜涵 , 吉洪蕾 , 邓皓轩 , 王畅 . 适用于飞行力学分析的旋翼涡环状态入流模型[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31395

Abstract

To meet the application requirements of helicopter special situation simulation, a rotor vortex ring state inflow model is established for flight mechanics analysis. Based on the turning relationship of the helicopter vertical motion damping in the rotor vortex ring state, the joint tip vortex motion equation and the modified rotor momentum theory equation are solved to obtain the critical damping boundary of the rotor vortex ring state. The climb rates and induced velocities of the rotor entering and exiting the vortex ring state are given. Cubic spline functions are used to establish a rotor vortex ring state induced velocity model, and the dynamic delay time of the rotor vortex ring state induced velocity is derived from the evolution relationship of the concentrated vorticity. Thus, a unified critical damping boundary for the rotor vortex ring state and dynamic inflow model are formed. On this basis, the rotor aerodynamic load model and the flight dynamics model of the helicopter vortex ring state were established, and the wind tunnel and flight test data were used to verify the model. The results show that the model in this paper can reasonably and accurately predict the critical damping boundary of the rotor vortex ring state and the changes of the rotor induced speed with the descent rate and forward flight speed. Combined with the rotor aerodynamic load model, it can accurately predict the changes of the rotor tension and torque coefficient with the descent rate. trend; comparison with flight test data shows that the model in this paper accurately simulates the dynamic characteristics of helicopter vertical damping in the rotor vortex ring state, and is suitable for flight mechanics analysis applications.

参考文献

[1] 招启军, 徐国华, 王博. 直升机空气动力学[M]. 科学出版社, 2024. ZHAO Q J, XU G H, WANG B. Helicopter aerody-namics[M]. Science Press, 2024. [2] 王畅, 马帅, 黄志银, 等. 直升机涡环状态边界风洞试验研究[J]. 实验流体力学, 2023, 37(5): 76-92. WANG C, MA S, HUANG Z Y, et al. A wind tunnel investigation of the helicopter vortex ring state boundary[J]. Journal of Experiments in Fluid Me-chanics, 2023, 37(5): 76-92. [3] CASTLES W J, GRAY R B. Empirical relation be-tween induced velocity, thrust, and rate of descent of a helicopter rotor[R]. NACA, Technical Report 1194, 1951. [4] YAGGY P F, MORT K W. Wind Tunnel Tests of Two VTOL Propellers in Descent[R]. NACA TN D-1766, 1963. [5] TAGHIZAD A, JIMENEZ J, BINET L, et al. Experi-mental and Theoretical Investigation to Develop a Model of Rotor Aerodynamics Adapted to Steep De-scent[C]. American Helicopter Society 58th Annual Forum, Montréal, Canada, June 11–13, 2002, Ameri-can Helicopter Society, Alexandria, VA, 2002. [6] 黄明其, 兰波, 何龙. 旋翼模型垂直下降状态气动特性风洞试验[J]. 哈尔滨工业大学学报, 2019(4): 131-137. HUANG MQ, LAN B, HE L. Wind Tunnel Test on Aerodynamic Characteristics of Rotor Model in Verti-cal Descent[J]. Journal of Harbin Institute of Tech-nology, 2019(4): 131-137. [7] 黄明其, 王亮权, 何龙. 旋翼涡环状态气动特性和参数变化的风洞试验[J]. 航空动力学报, 2019, 34(11): 2305-2315. HUANG M Q, LAN B, HE L. Wind Tunnel Test of Aerodynamic Characteristics and Parametric Variation for Rotor in Vortex Ring State[J].Journal of Aero-space Power, 2019, 34(11): 2305-2315. [8] WOLKOVITCH J. Analytical prediction of vortex-ring boundaries for helicopters in steep descents[J]. Journal of American Helicopter Society, 1972(3): 13-19. [9] PETERS D A, CHEN S Y. Momentum Theory, Dy-namic Inflow, and the Vortex‐Ring State[J]. Journal of the American Helicopter Society, 1982, 27(3): 18-24. [10] 辛宏, 高正. 直升机涡环状态速度边界的试验研究[J]. 南京航空航天大学学报, 1995, 27(4): 439-444. XIN H, GAO Z. An Experimental Investigation on the Boundary of Helicopter Vortex-Ring State[J]. Journal of Nan Jing University of Aeronautics & As-tronautics, 1995, 27(4): 439-444. [11] XIN H, GAO Z. Prediction of the Vortex-Ring State Boundary Based on Model Tests[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 1994, 11(2): 159–164. [12] VARNES D J. Development of a helicopter vortex ring state warning system through a moving map dis-play computer[D]. Monterey, California. Naval Post-graduate School, 1999. [13] 陆洋, 高正, 黄文明, 等. 直升机涡环状态边界的飞行试验研究[J]. 南京航空航天大学学报, 2001, 33(5): 405-409. LU Y, GAO Z, HUANG W M, et al. Flighting Test In-vestigation of Helicopter Vortex-Ring State Bounda-ry[J]. Journal of Nan Jing University of Aeronautics & Astronautics, 2001, 33(5): 405-409. [14] LU Y, Gao Z. Practical Boundary in Helicopter Vor-tex-ring state[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2003, 20(1): 6-11. [15] NEWMAN S, BROWN R, PERRY J, et al. Predicting the Onset of Wake Breakdown for Rotors in Descend-ing flight[J]. Journal of the American Helicopter So-ciety, 2003, 48(1): 28-38. [16] WANG S. Analytical Approach to the Induced Flow of a Helicopter Rotor in Vertical Descent[J]. Journal of the American Helicopter Society, 1990, 35(1): 92-98. [17] PERRY F J, CHAN W Y F, SIMONS I A, et al. Model-ing the Mean Flow Through a Rotor in Axial Flight Including Vortex Ring Conditions[J]. Journal of the American Helicopter Society, 2007, 52(3): 224-238. [18] JIMENEZ J, DESOPPER A, TAGHIZAD A, et al. Induced Velocity Model in Steep Descent and Vortex-Ring State Prediction[C]. 27th European Rotorcraft Forum, Moscow, Russia, September 2001. [19] JIMENEZ J, TAGHIZAD A, ARNAUD A. Helicopter flight tests in steep descent: Vortex Ring State analy-sis and induced velocity models improvement[C]. CEAS-TRA3 Conference Royal Aeronautical Society, Cambridge, United Kingdom, June 2002. [20] JOHNSON W. Model for vortex ring state influence on rotorcraft flight dynamics[R]. NASA, 2004: 839-899. [21] RAND O. A phenomenological modification for Glauert's classical induced velocity equation[J]. Jour-nal of the American Helicopter Society, 2006, 51(3): 279-282. [22] PETERS D A, HE C. Modification of Mass-Flow Pa-rameter to Allow Smooth Transition Between Heli-copter and Windmill States[J]. Journal of the Ameri-can Helicopter Society, 2006, 51(3): 275-278. [23] CHEN C. Development of a simplified inflow model for a helicopter rotor in descent flight[D]. Georgia In-stitute of Technology, 2006. [24] CHEN C, PRASAD J V R. Simplified rotor inflow model for descent flight[J]. Journal of aircraft, 2007, 44(3): 936-944. [25] BASSET P M, CHEN C, PRASAD J V R, et al. Pre-diction of vortex ring state boundary of a helicopter in descending flight by simulation[J]. Journal of the American Helicopter Society, 2008, 53(2): 139-151. [26] AHLIN G A, Brown R E. Wake structure and kine-matics in the vortex ring state[J]. Journal of the American Helicopter Society, 2009, 54(3): 32003-32003. [27] LEISHMAN J G, Bhagwat M J, Ananthan S. The vortex ring state as a spatially and temporally devel-oping wake instability[J]. Journal of the American Helicopter Society, 2004, 49(2): 160-175. [28] MAKEEV P V, IGNATKIN Y M, SHOMOV A I. Nu-merical investigation of full scale coaxial main rotor aerodynamics in hover and vertical descent[J]. Chi-nese Journal of Aeronautics, 2021, 34(5): 666-683. [29] MAKEEV P, IGNATKIN Y, SHOMOV A. Numerical Study of Coaxial Main Rotor Aerodynamics in Steep Descent[J]. Aerospace, 2022, 9(2): 61. [30] BRAND A, DREIER M, KISOR R, et al. The nature of vortex ring state[J]. Journal of the American Heli-copter Society, 2011, 56(2): 22001. [31] Van VYVE H, CHATELAIN P, WINCKELMANS G. Simulation of a helicopter in vortex ring state through a coupled simulation of multi-body dynamics and aerodynamics[D]. UCL-Ecole Polytech, 2019. [32] MARSHALL M, TANG E, CORNELIUS J, et al. Per-formance of the Dragonfly Lander’s Coaxial Rotor in Vortex Ring State[C]. AIAA Scitech 2024 Forum, 2024: 0247. [33] 李高华. 直升机旋翼涡环状态流场高分辨率数值模拟方法研究[D]. 上海交通大学, 2018. LI GH. Study of High Resolution Numerical Method for Helicopter Rotor In Vortex Ring State[D].Shang-hai Jiao Tong University, 2018. [34] 王军杰, 陈仁良, 王志瑾, 等. 倾转旋翼机涡环状态数值模拟及数学建模[J]. 哈尔滨工业大学学报, 2023, 55(4): 35-43. WANG J J, CHENG R L, WANG Z J, et al. Numerical simulation and mathematical modeling of vortex ring state of Tiltrotor aircraft[J]. Journal of Harbin Institute of Technology, 2023, 55(4):35-43. [35] 孙钰锟, 王珑, 王同光, 等. 侧风下孤立尾桨的气动特性和抗侧风优化[J]. 航空学报, 2023, 44(10): 60-76. SUN Y K, WANG L, WANG T G, et al. Aerodynamic characteristics and crosswind counteraction of isolat-ed tail rotor in crosswind environment[J]. Acta Aero-nautica et Astronautica Sinica, 2023, 44(10): 60-76. [36] WOOD T. Fifty Years of Industry Perspective 36th Alexander A. Nikolsky Honorary Lecture[J]. Journal of the American Helicopter Society, 2020, 65(2). [37] HE C J. Development and Application of a General-ized Dynamic Wake Theory for Lifting Rotors[D]. Georgia Institute of Technology, School of Aerospace Engineering, Aug. 1989. [38] 吉洪蕾, 苏俊杰, 陈仁良, 等. 适于直升机飞行仿真的高原大气紊流模型[J]. 航空学报, 2022, 43(7): 126564. JI H L, SU J J, CHEN R L, et al. Highland atmospher-ic turbulence model for helicopter flight simulation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 126564. [39] 吉洪蕾, 赵辉, 陈仁良, 等. 基于直升机舰面起降动态仿真的风限图计算[J]. 航空学报, 2018, 39(11): 22156. JI H L, ZHAO H, CHEN R L, et al. Wind over deck envelope calculation based on simulation of helicop-ter shipboard operations[J]. Acta Aeronautica et As-tronautica Sinica, 2018, 39(11): 22156.
文章导航

/