固体发动机药柱加压固化残余应力应变产生与释放机理解析

  • 魏嘉 ,
  • 于宝石 ,
  • 张大鹏 ,
  • 申志彬 ,
  • 雷勇军
展开
  • 1. 中国人民解放军国防科技大学
    2. 国防科技大学空天科学学院
    3. 国防科技大学

收稿日期: 2024-12-13

  修回日期: 2025-01-25

  网络出版日期: 2025-02-06

基金资助

固体推进全国重点实验室研究基金资助项目;国防科技大学自主创新科学基金项目;国防科技大学空天科学院青年人才自主研究培育项目

Analysis of the generation and release mechanism of residual stress and strain in solid rocket motor propellant grain with pressure cure

  • WEI Jia ,
  • YU Bao-Shi ,
  • ZHANG Da-Peng ,
  • SHEN Zhi-Bin ,
  • LEI Yong-Jun
Expand

Received date: 2024-12-13

  Revised date: 2025-01-25

  Online published: 2025-02-06

Supported by

National Key Laboratory of Solid Rocket Propulsion;Independent Innovation Science Fund Project of the National University of Defense Technology;Independent Research and Cultivation Project for Young Talents of College of Aerospace Science and Engineering,National University of Defense Technology

摘要

为探究加压固化工艺下固体发动机药柱固化残余应力应变的产生与释放机理,基于黏弹性理论、有限差分法和增量法,建立了考虑固化降温过程中热-化-力多物理场耦合的理论模型,揭示了药柱固化残余应力应变的组成、分布和演化规律,获得了药柱温度、固化度与固化残余应力应变之间的映射关系,并进一步优化了药柱固化残余应力应变的释放路径。结果表明,药柱固化残余应力应变主要由固化阶段热膨胀和固化收缩以及降温阶段冷却收缩三部分累积造成,其分别引起的固化残余应力占比约为5%、12%和83%,固化残余应变占比约为-1%、24%和77%。降温阶段随着药柱内部温度降低,固化残余应力应变线性增大。采用理论模型计算得到了加压固化工艺的最佳压力载荷,其与壳体环向弹性模量呈线性关系。相较于常规加压固化工艺,基于固化响应组成和演化规律优化的工艺路径,可以使固化降温过程中的最大固化残余应力应变平均降低65.5%左右。

本文引用格式

魏嘉 , 于宝石 , 张大鹏 , 申志彬 , 雷勇军 . 固体发动机药柱加压固化残余应力应变产生与释放机理解析[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31661

Abstract

To investigate the generation and release mechanism of residual stress and strain in solid rocket motor propellant grain with pressure cure, a theoretical model considering the coupling of thermochemical-mechanical multi physics fields during curing and cooling process was developed based on viscoelastic theory, finite difference method, and incremental method. The composition, distribution and evolution laws of residual stress and strain of grain were revealed. The mapping relationships between temperature, degree of cure, residual stress and strain of grain were obtained. The release path of residual stress and strain of grain was optimized. The results showed that the residual stress and strain of grain were mainly caused by the accumulation of three parts: thermal expansion and cure shrinkage during curing stage, and cooling shrinkage during cooling stage. The residual stress caused by three parts accounted for about 5%, 12% and 83% respectively. The residual strain caused by three parts accounted for about -1%, 24% and 77% respectively. During cooling stage, as the temperature of grain decreases, the residual stress and strain increase linearly. Using the proposed theoretical model, the optimal pressure load of pressure cure technology was calculated, which is linearly related to the circumferential elastic modulus of the case. Compared with the conventional pressure cure technology, the optimized technology based on the composition and evolution laws of response can reduce the maximum residual stress and strain during curing and cooling process by an average of about 65.5%.

参考文献

[1]王鸿丽, 许进升, 陈雄, 等.改性双基推进剂黏弹-黏塑性本构模型[J].航空学报, 2017, 38(4):142-149 [2]李磊.基于结构完整性分析的固体火箭发动机药形改进与优化设计[D]. 长沙: 国防科学技术大学, 2012: 2. [3]艾诗迪, 李军伟, 田忠亮, 等.横向复合过载下固体火箭发动机压强振荡研究[J]. 航空学报, [2024-11-8]. doi: 10.7527/S1000-6893.2024.30233. [4]吴建军, 胡泽君, 何志成, 等.电控固体推进技术研究进展[J].航空学报, 2023, 45(15):61-81 [5]童心, 陈雄, 许进升, 等.循环加载下复合推进剂的能量耗散[J].航空学报, 2018, 39(11):124-132 [6]Liu Xiangyang, Xie Xuyuan, Zhou Dongmo, et al.Numerical analysis of curing residual stress and strain in NEPE propellant grain[J].Polymers, 2023, 15(4):1019- [7]荒井敬司, 石秀发.固体火箭发动机加压固化的研究[J].固体火箭技术, 1984, (4):54-62 [8]Charles C.Pioneers in propulsion-a history of CSD, Pratt & Whitney’s solid rocket company[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Nashville, TN: American Institute of Aeronautics and Astronautics, 2010. [9]HUNT D A.Computing pressure cure viscoelastic effects in solid propellants[J].Journal of Spacecraft and Rockets, 1972, 9(12):937-938 [10]Ellis R, Hammond R, Donguy P.Advanced space motor demonstration[C]//16th Joint Propulsion Conference. Hartford, CT, U.S.A.: American Institute of Aeronautics and Astronautics, 1980. [11]宋明德.日本MU顶级发动机研制现状[J]. 固体火箭技术, 1990(4): 81-90.[J].固体火箭技术, 1990, (4):81-90 [12]宗路航, 杜聪, 卢山, 等.固体火箭发动机药柱加压固化仿真[J].固体火箭技术, 2015, 38(5):653-656 [13]刘凯, 郜婕, 韩翔, 等.加压固化工艺对药柱结构完整性的影响[J].固体火箭技术, 2022, 45(4):648-652 [14]Cui Zhanxin, Li Haiyang, Shen Zhibin, et al.Analysis of load optimization in solid rocket motor propellant grain with pressure cure[J].International Journal of Aerospace Engineering, 2021, 2021(4):1-11 [15]Cui Zhanxin, Li Haiyang, Shen Zhibin, et al.A viscoelas-tic constitutive model of propellant with pressure cure[J].Propellants, Explosives, Pyrotechnics, 2021, 46(7):1036-1048 [16]崔占鑫.复合固体推进剂加压固化粘弹性本构模型及其应用[D]. 长沙: 国防科技大学, 2021: 33-72. [17]缪求文, 申志彬, 崔占鑫, 等.固体火箭发动机加压固化压强优化设计[J].固体火箭技术, 2022, 45(4):589-593 [18]于宝石, 雷勇军, 申志彬, 等.固体发动机药柱结构固化残余应力分析与控制技术研究综述[J]. 航空学报, [2024-11-8]. doi: 10.7527/S1000-6893.2024.31083 [19]梁党通, 贾小锋, 胡子衍, 等.固体推进剂药柱加压固化工艺研究[C]//航天先进制造技术国际研讨会文集. 深圳, 2017. [20]张恺宁, 王春光, 刘琪琪, 等.一种固体推进剂加压固化装置: CN202223130392.2[P]. 2023-03-14. [21]申志彬, 张慧慧, 李海阳, 等.一种用于固体推进剂浇注生产的温压协同固化方法与装置: CN202311077810.2[P]. 2023-10-24. [22]刘仔, 恩权, 褚佑彪, 等.固体火箭发动机加压固化理论及仿真研究[J].固体火箭技术, 2019, 42(5):576-579 [23]Zhang Kaining, Wang Chunguang, Li Qun, et al.Strain prediction of grain in solid rocket motor under the pres-sure curing molding technology[J].International Journal of Aerospace Engineering, 2023, 2023(1):1-12 [24]Bogetti Travis A, Gillespie John W.Process-induced stress and deformation in thick-section thermoset compo-site laminates[J].Journal of Composite Materials, 1992, 26(5):626-660 [25]Wang Qi, Yang Xufeng, Zhang Xiaowen, et al.Effect of cure cycles on residual stresses in thick composites using multi-physics coupled analysis with multiple constitutive models[J].Materials Today Communications, 2022, 32(Suppl C):104094- [26]Kim Yeong K, White Scott R.Stress relaxation behavior of 3501‐6 epoxy resin during cure[J].Polymer Engineer-ing & Science, 1996, 36(23):2852-2862 [27]Hui Xinyu, Xu Yingjie, Zhang Wenchang, et al.Multiscale collaborative optimization for the thermochemical and thermomechanical cure process during composite manufacture[J].Composites Science and Technology, 2022, 224:109455- [28]Ma Song, Fan Hongjie, Zhang Ning, et al.Investigation of a low-toxicity energetic binder for a solid propellant: curing,microstructures,and performance[J].ACS Omega, 2020, 5(47):30538-30548 [29]周东谟, 谢旭源, 王瑞民, 等.推进剂固化降温过程残余应力应变分析[J].含能材料, 2024, 32(2):193-203 [30]章顺全, 孟祥斌.正交各向异性玻璃钢厚壁圆筒受内压作用时筒壁应力的计算[J].化工设备设计, 1991, 1991(3):7-10 [31]朱伯芳.有限单元法原理与应用[M]. 第四版 北京: 水利电力出版社, 2018: 385. [32]蒙上阳, 唐国金, 雷勇军.材料性能对固体发动机结构完整性的影响[J].国防科技大学学报, 2002, 24(5):10-15 [33]刘中兵, 周艳青, 张兵.固体发动机低温点火条件下药柱结构完整性分析[J].固体火箭技术, 2015, 38(3):351-355 [34]刘琪琪, 王春光, 张恺宁, 等.推进剂的非线性粘弹损伤本构及其细观损伤演化研究[J].固体火箭技术, 2023, 46(1):88-95 [35]卢鑫浩, 叶宝云, 程王健, 等.基推进剂药浆流变特性和固化动力学研究[J].含能材料, 2022, 30(11):1083-1089 [36]陈支厦, 郑邯勇, 王树峰, 等.对复合固体推进剂能量性能影响理论研究[J].化学推进剂与高分子材料, 2011, 9(5):61-64 [37]刘世俭, 王艳茹.固体火箭发动机药柱固化收缩应力分析[C]//2000年全国固体火箭发动机设计技术学术交流会. 2000. [38]邓斌, 申志彬, 段静波, 等.考虑对流换热影响的固体发动机热力耦合分析[J].固体火箭技术, 2012, 35(1):42-46 [39]Paulo Teixeira Gon?alves, Albertino Arteiro, Nuno Ro-cha, et al.Numerical analysis of micro-residual stresses in a carbon/epoxy polymer matrix composite during curing process[J].Polymers, 2022, 14(13):2653-
文章导航

/