柔性飞翼布局机翼气动弹性响应控制与风洞试验

  • 白裕峰 ,
  • 邹奇彤 ,
  • 黄锐 ,
  • 冉玉国 ,
  • 刘豪杰
展开
  • 1. 南京航空航天大学
    2. 南京航空航天大学航空学院
    3. 航空工业成都飞机设计研究所

收稿日期: 2024-10-28

  修回日期: 2025-01-18

  网络出版日期: 2025-02-06

基金资助

国家自然科学基金;飞行器基础布局全国重点实验室开放基金

Aerolastic control of a flexible fly-wing aircraft wing and wind-tunnel tests

  • BAI Yu-Feng ,
  • ZOU Qi-Tong ,
  • HUANG Rui ,
  • RAN Yu-Guo ,
  • LIU Hao-Jie
Expand

Received date: 2024-10-28

  Revised date: 2025-01-18

  Online published: 2025-02-06

Supported by

The National Natural Science Foundation of China;Foundation of National Key Laboratory of Aircraft Configuration Design

摘要

飞翼布局飞机因具有强隐身、高气动效率等优势,收到了国内外的广泛关注。但由于其机身转动惯量小、机翼低阶弯曲模态频率低等原因,极易在飞行包线范围内发生刚-弹耦合颤振、高动态气动弹性响应等复杂气动弹性问题。本文针对柔性飞翼布局飞机的高动态气动弹性振动抑制问题,提出了一种基于鲁棒 控制器的主动气动弹性控制方法,旨在通过主动控制降低飞机结构的气动弹性振动并对外部未知扰动具有较强的鲁棒性能。首先,采用 鲁棒控制理论设计了气动弹性响应控制器,通过优化其加权参数,使闭环系统的 范数最小化,以提高系统的鲁棒性和稳定性。其次,为了验证控制方法的有效性,本文开展了风洞试验验证。风洞试验结果表明,在鲁棒控制器开启的情况下,气动弹性响应控制器在一定风速范围内均可显著降低飞机翼尖加速度响应的均方根值,最高可降低35%,进而验证了鲁棒气动弹性控制器的有效性及其鲁棒性。

本文引用格式

白裕峰 , 邹奇彤 , 黄锐 , 冉玉国 , 刘豪杰 . 柔性飞翼布局机翼气动弹性响应控制与风洞试验[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31452

Abstract

Flying-wing aerial vehicles have received extensive attention at home and abroad because of their strong stealth performance and excellent aerodynamic characteristics. However, due to the small rotational inertia of the fuselage and the low frequency of the low-order bending modes of the wing, complex aeroelastic problems such as rigid-elastic coupled flutter vibration and highly dynamic aeroelastic response are very likely to occur in the flight enve-lope region. This paper presents the active aeroelastic control method based on the robust controller for high-dynamic aeroelastic vibration suppression. The control objective is to reduce the aeroelastic vibration of the aircraft structure and enhance the control robustness to external unknown disturbances simultaneously. Firstly, the aeroe-lastic response controller is designed using the robust control theory, and its weighting parameters are opti-mized to minimize the paradigm of the closed-loop system to improve its robustness and stability. Secondly, the ef

参考文献

[1] 黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3): 428-466.
[2] MUKHOPADHYAY, VIVEK. Flutter suppression digi-tal control law design and testing for the AFW windtun-nel model[A]. AIAA Dynamics Specialists Confer-ence[C], 1992.
[3] WAITMAN S, MARCOS A. H∞ control design for active flutter suppression of flexible-wing unmanned aer-ial vehicle demonstrator[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(4): 656-672.
[4] Xiong G, Yang C. Synthesis on flutter suppression con-trol law for active aeroelastic wing[C]//19th AIAA Ap-plied Aerodynamics Conference. 2001: 1463.
[5] LIBERSCU L, MARZOCCA P, SILVA W. Aeroelasticity of 2-D lifting surfaces with time-delayed feedback con-trol[J]. Journal of Fluids and Structures, 2004, 20(2): 197-215.
[6] ZHAO Y. Stability of a two-dimensional airfoil with time-delayed feedback control[J]. Journal of Fluids and Structures, 2009, 25(1): 1-25.
[7] ZHAO Y H. Stability of a time-delayed aeroelastic sys-tem with a control surface[J]. Aerospace Science and Technology, 2011, 15(1): 72~77.
[8] HUANG Rui, ZHAO, et al. Wind-Tunnel Tests for Acti-ve Flutter Control and Closed-Loop Flutter Identifi-cation[J]. AIAA journal, 2016, 54(7): 2089-2099.
[9] 褚健, 俞立, 苏宏业著. 鲁棒控制理论及应用[M]. 第一版, 杭州: 浙江大学出版社, 2000.
[10] ZAMES G. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses[J]. IEEE Transactions on automatic control, 1981, 26(2): 301-320.
[11] 于明礼, 文浩, 胡海岩. 二维翼段颤振的H∞ 控制[J]. 振动工程学报, 2006, 19(3): 326-330.
[12] 于明礼, 文浩, 胡海岩. 二维翼段颤振的 μ控制[J]. 航空学报, 2007, 28(2): 340-343.
[13] WASZAK M R. Robust multivariable flutter suppression for benchmark active control technology wind-tunnel model[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 147-153.
[14] MU?OZ á, GARCíA-FOGEDA P. Active Flutter Sup-pression of a Wing Section in the Subsonic, Sonic and Supersonic Regimes by the H∞ Control Method[J]. Aer-ospace, 2024, 11(3): 198.
[15] Ming-Zhou G, Guo-Ping C. Finite-time fault-tolerant control for flutter involving control delay[J]. Journal of the Franklin Institute, 2016, 353(9): 2009-2029.
[16] 钱文敏, 赵永辉, 胡海岩. 二元机翼/外挂系统的颤振鲁棒抑制[J]. 中国科学: 物理学 力学 天文学, 2013, 43(04): 334-344.
[17] HASHEMI K E, PAK C, AKELLA M R. Delta adaptive flexible motion control for the X-56A aircraft[C]//AIAA Atmospheric Flight Mechanics Conference. 2015: 2244.
[18] LIVNE E. 2018. Aircraft active flutter suppression: State of the art and technology maturation needs. J Aircr. 55: 410-452.
[19] DANOWSKY B P, KOTIKALPUDI A, SCHMIDT D, et al. Flight testing flutter suppression on a small flexible flying-wing aircraft[C]//2018 multidisciplinary analysis and optimization conference. 2018: 3427.
[20] THEIS J, PFIFER H, SEILER P J. Robust control de-sign for active flutter suppression[C]//AIAA Atmospheric Flight Mechanics Conference. 2016: 1751.
[21] THEIS J, PFIFER H, SEILER P. Robust modal damping control for active flutter suppression[J]. Journal of Guid-ance, Control, and Dynamics, 2020, 43(6): 1056-1068.
[22] ZOU Qitong1, MU Xusheng1, LI Hongkun2, HUANG Rui1, HU Haiyan1.Robust active suppression for body-freedom flutter of a flying-wing unmanned aerial vehi-cle[J].Journal of the Franklin Institute, 2021,Vol.358(5): 2642-2660
[23] 胡海岩. 机械振动基础. 第2版[M]. 北京航空航天大学出版社, 2022.11.
[24] KARPEL M, STRUL E. Minimum-state unsteady aero-dynamic approximations with flexible constraints[J]. Journal of Aircraft, 1996, 33(6): 1190-1196.
[25] WU Z, COOPER J E. Active flutter suppression combin-ing the receptance method and flutter margin[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynam-ics, and Materials Conference. 2016: 1227.
[26] TSUI C C. Robust control system design: advanced state space techniques[M].3rd ed. Boca Raton: CRC Press, 2022.
文章导航

/